
Mobile Security: Android Malware

Analysis
Saurabh Kumar

Senior Research Scholar

IIT Kanpur

Date: 01/06/2022

MOTIVATION

2

Why Mobile Security?
User activity

Valuable data

Always on

Multiple Attack Surfaces

3

Mobile Device

Internet

WiFi

Telecom
Provider

Web
sites

Mobile
apps

Corporate Intranet & Systems /
Personal computers Connectivity

Public Place
Chargers

Why Android?

4 Source: International Data Corporation (IDC), October 2021

Period Android iOS Others

2020 84.1% 15.9% 0%

2021 83.8% 16.2% 0%

2022 84.1% 15.9% 0%

2023 84.4% 15.6% 0%

2024 84.7% 15.3% 0%

2025 84.9% 15.1% 0%

1. Almost completely open source

2. Global smartphone market share

Publish app
App Developer

Tool chain

(Cordova, App generator, …)

Sideloading

Publish app

Alternate Store Play Store

Configure

Administrators

Platform vendors
Advertisement

networks

Online services

Application Framework

Native libs

(C / C++)

Linux Kernel (modified)

Android Runtime

(Dalvik / ART)

Third Party app Ad Libs

Use Tools

5

Actors in the Android Ecosystem

Security Impact of an Actor Over Others

6

Actor O
S

D
e
v

e
lo

p
e

r

H
/W

V
e

n
d

o
r

L
ib

ra
ry

P
ro

v
id

e
rs

S
/W

D
e
v

e
lo

p
e

r

T
o

o
lc

h
a

in

P
ro

v
id

e
rs

S
/W

P
u

b
li

s
h

e
r

S
/W

M
a

rk
e

t

E
n

d
 U

s
e

r

OS Developer -- Partial Full Full Partial Full Full Full

H/W Vendor None -- Full Full None None None Full

Library Provider None None -- Full None None None Full

S/W Developer None None Partial -- None None None Full

Toolchain Providers None None None Full -- None None Partial

S/W Publisher None None Partial Partial None -- Partial Full

S/W Market None None Partial Partial None None -- Full

End User None None None None None None None --

Where to Improve Security?

7

Tool Chain

Provider

3rd party

libraries

App developer

Markets

Web Services

Ad & Analytics

Network

Installed Apps

Middleware

Linux Kernel

Uses tool chains

Includes

libraries
Publish App

Install

Use via internet

Android API

Linux API

Android Platform

Useable Security

Application Vetting

Inline reference

monitors

Retrofit Android’s

Security

Motivation: Summary
Feature-rich smartphones and appification have induced security

research on various new aspects

Android’s open-source nature has made Android very attractive to

security researchers

Android’s market share has made Android the #1 target for malware

authors and cyber criminals

Various actors in the ecosystem with (strong) influence on security

and privacy

8

ANDROID BACKGROUND

9

Android Software Stack

10

Default apps

Contacts SMS

Application Framework

Third party apps

paytm linkedin

Native libs

(C / C++)

Linux Kernel (modified)

Android Runtime

(Dalvik / ART)

Application Packages (APK)
APK is simply a packaging format like JAR, ZIP and TAR

Component of Application

Activity

Content Provider

Services

Broadcast Receiver

Native Code (C/C++ shared libraries)

Resources

META-INF

Application Manifest

Classes.dex Native Libs Resources META-INF Application

Manifest

11

ANDROID SECURITY

ARCHITECTURE
• Package Integrity

• Sandboxing

• Permission and Least Privilege

12

Package Integrity: Package Manifest
Created with jarsigner

META-INF

Manifest.mf, Cert.sf, Cert.{RSA,DSA}

13

Manifest-Version: 1.0

Built-By: Generated-by-ADT

Created-By: Android Gradle 3.0.1

Name: res/mipmap-hdpi-v4/ic_launcher.png

SHA1-Digest: 2zkIQdtvlXqEHSTVOVuwBQ18aIs=

Signature-Version: 1.0

Created-By: 1.0 (Android)

SHA1-Digest-Manifest:

h9xNllN3bQiTJ8RQyPUWBojRKD8=

X-Android-APK-Signed: 2

Name: res/mipmap-hdpi-v4/ic_launcher.png

SHA1-Digest: L8RpX5x8pChJbucqml+hMt9D9CQ=

Manifest.mf Cert.sf

hash

hash

ic_launcher.png

File

Certificate Cert.sf signature

CERT.{RSA,DSA}

Verifying of package manifest
Chain of trust:

14

PKI
Package certificate

in Cert.{RSA,DSA}

Cert.sf Manifest.mf

Files

ANDROID SECURITY

ARCHITECTURE
• Package Integrity

• Sandboxing

• Permission and Least Privilege

15

Sandboxing

The application sandbox specifies which system resources the

application is allowed to access

An attacker can only perform actions defined in the sandbox

16

Application Isolation by Sandboxing
Each Application is isolated in its own environment

Applications can access only its own resources

Access to sensitive resources depends on the application’s rights

Sandboxing is enforced by Linux

No rights to

“internet”

17

Application sandbox
Isolation: Each installed App has

a separate user ID

Each App lives in its own sandbox

App Code

(Classes.dex)

Core libraries

syscalls

Kernel

Native Code

(*.so)

J
N

I

UID A

18

Application sandbox
Isolation: Each installed App has

a separate user ID

Each App lives in its own sandbox

Kernel

App Code

(Classes.dex)

Core

libraries
Native Code

(*.so)

J
N

I

UID A

App Code

(Classes.dex)

Core

libraries
Native Code

(*.so)

J
N

I

UID B

App Code

(Classes.dex)

Core

libraries
Native Code

(*.so)

J
N

I

UID C

Process boundary Process boundary

19

ANDROID SECURITY

ARCHITECTURE
• Package Integrity

• Sandboxing

• Permission and Least Privilege

20

Android Permission System
Access rights in Android’s application framework

Permissions are required to gain access to

 System interfaces (Internet, send SMS, etc.)

 System resources (logs, battery, etc.)

 Sensitive data (SMS, contacts, etc.)

Currently more than 140 default permissions defined in Android

Permissions are assigned to sandbox

Application developers can also define their own permissions

21

Android Permission: Example

App B
(has permission P)

App C
(has not permission P)

App A

S
e
rv

ic
e

(P
e
rm

is
s
io

n
 P

)

22

Permissions’ Protection Level
Normal

Dangerous

Signature

SignatureOrSystem

23

Dynamic Permissions (≥ Android 6.0)
App developers must check if their apps hold required dangerous

permission, otherwise request them at runtime

User can grant permissions at runtime and also revoke once granted

permissions again

24

Is the requested

permission

reasonable?

Should I

adjust some

permissions?

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

25

Vulnerability Classification

26

Android Vulnerability

Architecture Software Hardware

Operating System Third Party App
Original Equipment

Manufacturer (OEM)

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

27

Application-Level Privilege Escalation

Attacks

28

Confused

Deputy

Attack

Collusion

Attack

Malicious App

Malicious App Malicious App

Confused Deputy App

Collusion Attack

29

Malicious apps collude in

order to merge their

respective permissions
Variants:

Apps communicate directly

Apps communicate via covert channels in Android

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

30

Dirty COW
Existed in the Linux Kernel for 9 years

A local Privilege Escalation Vulnerability

Exploits a race condition in the implementation of the copy-on-write

mechanism

Turns a read-only mapping of a file into a writable mapping

31 Source: https://nakedsecurity.sophos.com/2017/09/29/android-malware-zniu-exploits-dirtycow-vulnerability/

Media Projection Service Issue

32

Source: https://latesthackingnews.com/2017/11/20/android-issue-allows-attackers-to-capture-screen-and-record-audio-

on-77-of-all-devices/

Over-privileged Apps
Many apps request permissions that their functionality does not

require

Suspected root cause: API documentation/naming convention

Solution: API Permissions Maps

 Can be integrated into lint tools

33

API1

API2

API3

Perm1

Perm2

Perm3

Confused Deputy Attack

A privileged app is fooled into misusing its privileges on behalf of

another (malicious) unprivileged app

Example:

Unauthorized phone calls

Various confused deputies in system apps

Unprivileged App Protected Resources Privileged App

34

Confused Deputy Introduce by OEMs
Several confused deputies found in Samsung devices’ firmware

One deputy running with system privileges provided root shell service to

any app

35

Internet

Contacts

GPS Location Access to SD card

Access to mail account

Camera

Microphone

SMS & MMS

Backdoor

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

36

Broadcom Wi-Fi SoC Flaw

37

Source: https://arstechnica.com/information-technology/2017/04/wide-range-of-android-phones-vulnerable-to-device-

hijacks-over-wi-fi/

ADVANCED THREAT

38

Dynamic Code Loading: Techniques and

Risks

Techniques API Risk
Code Injection

Vector

Class loader DexClassLoader

No checking of

Integrity or

Authenticity

Attacker can

control loaded

code

Package

Context
createPackageContext

No verification: App

from same developer

Attacker can install

app

Native Code Java Native Interface
No restrictions on

location

Manipulate the

native code to

inject code

39

Android Instant App

40

Source: https://www.theverge.com/2016/5/18/11705918/google-instant-apps-android-hands-on-video

Source: https://www.theverge.com/2017/5/17/15649372/google-android-instant-apps-available-io-2017

MALWARE ANALYSIS
• Analysis Techniques and Their Limitations

41

42

Source: https://www.zdnet.com/article/this-data-stealing-android-malware-infiltrated-the-google-play-store-infecting-

users-in-196-countries/

Source: https://thehackernews.com/2019/02/beauty-camera-android-apps.html

Source: https://thehackernews.com/2019/02/android-clickboard-hijacking.html

Source: https://www.techradar.com/news/android-banking-malware-hitting-more-

users-than-ever

Why Malware Analysis?

In every 10 seconds, A

new Android malware

is born.

Android Malware Statistics

43 Source: AV-TEST malware statistics report Jan 2022

0
.9

4

1
.0

2

2
.5

7

6
.1

3

6
.2

0

5
.5

4

3
.2

0

3
.1

3

3
.3

9

0

1

2

3

4

5

6

7

8

2013 2014 2015 2016 2017 2018 2019 2020 2021

M
ill

io
n
s

New Android malware samples per year

Analysis Techniques

44

Analysis Technique

Static Hybrid Dynamic

Malware Analysis
Many work has been proposed

Deployed on

Server

Real Device

Offline analysis can be

bypassed

On a real device, existing

offline method cannot be used

High resources requirement

45

Server

(Offline)

Real Device

(Online)

Static and

Dynamic
Static

Limited

resources

Unlimited

resources

Emulation Overhead Cross-layer

Existing

offline

method

Analysis Techniques Challenges
Techniques Challenges

Static • Dynamically Loaded Code

• Crypto API

• Java Reflection

• False positive (permission based)

• Network based activity

Dynamic • False positive (Anomaly based)

• Code Coverage

• 20 times slowdown system if used in real device

Hybrid • Data Dependency ACG

• Logic based triggers

• Obfuscation and reflection

46

Malware Analysis Frameworks
Framework Method Limitation

Aurasium [Xu et al. 2012] Dynamic – detect API misuse Native code, java refl.,

DroidScope [Yan and yin 2012] Dynamic + virt. Emulation-detection, Cross-layer

SmartDroid [Zheng et al. 2012]
Statically find activity path + dynamic to

find triggers
Native code

Jin et al. [2013] Dynamic (SDN traffic monitoring) Encrypted traffic

SAAF [Hoffmann et al. 2013] Static (smali) auto and optional manual Reflection, native code

RiskMon [Jing et al. 2014]
Dynamic + machine learning + API

monitor
Colluding apps

Drebin [Arp et al. 2014]
Static (features from Manifest + dex

code) + machine learning

Colluding apps, Obfuscation,

Dynamic code, Native code

DroidSafe [Gordan et al. 2015] Static information flow + hooks + calls

that start activity

Cross-layer, Emulation-detection

47

Malware Analysis Frameworks Cont..
Framework Method Limitation

Wang et al. [2016]
Static + machine learning +

permissions + APIs

Dynamic code loading, Native

code, obfuscation

DroidSeive [Guillermo et al. 2017]
Static + machine learning +

multiple location features
Dynamic code loading

IntelliAV:[Ahmadi, et al. 2017]
Static + machine learning + API

Call, Components statistics

Dynamic code loading, Native

code, obfuscation

TinyDroid [Chen et al. 2018]
Static + Opcode + machine

learning
Dynamic code loading, Native code

Fatima et al. [2019]
Static + machine learning +

permissions

Dynamic code loading, Native

code, repackaging attack

48

Analysis Techniques used in Different

Area

49

50 50

58

36 39

27

14 11
15

0

10

20

30

40

50

60

70

Malware Grayware Vulnerable

Static Dynamic Hybrid

CHALLENGES AND FUTURE

DIRECTIONS

50

Challenges in Android Security

51

Android Instant Apps

Device Fragmentation

Cheap Devices

Colluding Apps

Platform Sensing Malware

Future Research Direction

52

Basic simple app Analysis to analyze whole system

Consider dynamically loaded code that is not bundled with installed

packages

Analyze code of different forms and from different languages

Native (C/C++), Obfuscated Code

Colluding malware analysis

Stealthy Dynamic Analyzer

53

