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Why Mobile Security? 
User activity 

Valuable data 

Always on 

Multiple Attack Surfaces 
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Why Android? 

4 Source: International Data Corporation (IDC), October 2021 

Period Android iOS Others 

2020 84.1% 15.9% 0% 

2021 83.8% 16.2% 0% 

2022 84.1% 15.9% 0% 

2023 84.4% 15.6% 0% 

2024 84.7% 15.3% 0% 

2025 84.9% 15.1% 0% 

1. Almost completely open source 

2. Global smartphone market share 
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Actors in the Android Ecosystem 



Security Impact of an Actor  Over Others 
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OS Developer -- Partial Full Full Partial Full Full Full 

H/W Vendor None -- Full Full None None None Full 

Library Provider None None -- Full None None None Full 

S/W Developer None None Partial -- None None None Full 

Toolchain Providers None None None Full -- None None Partial 

S/W Publisher None None Partial Partial None -- Partial Full 

S/W Market None None Partial Partial None None -- Full 

End User None None None None None None None -- 



Where to Improve Security? 
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Motivation: Summary 
Feature-rich smartphones and appification have induced security 

research on various new aspects 

Android’s open-source nature has made Android very attractive to 

security researchers 

Android’s market share has made Android the #1 target for malware 

authors and cyber criminals 

Various actors in the ecosystem with (strong) influence on security 

and privacy 
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ANDROID BACKGROUND 
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Android Software Stack 
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Application Packages (APK) 
APK is simply a packaging format like JAR, ZIP and TAR 

Component of Application 

Activity 

Content Provider 

Services 

Broadcast Receiver 

Native Code (C/C++ shared libraries) 

Resources 

META-INF 

Application Manifest 

Classes.dex Native Libs Resources META-INF Application 

Manifest 
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ANDROID SECURITY 

ARCHITECTURE 
• Package Integrity 

• Sandboxing 

• Permission and Least Privilege 
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Package Integrity: Package Manifest 
Created with jarsigner 

META-INF 

Manifest.mf, Cert.sf, Cert.{RSA,DSA} 
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Manifest-Version: 1.0 

Built-By: Generated-by-ADT 

Created-By: Android Gradle 3.0.1 

 

Name: res/mipmap-hdpi-v4/ic_launcher.png 

SHA1-Digest: 2zkIQdtvlXqEHSTVOVuwBQ18aIs= 

 

Signature-Version: 1.0 

Created-By: 1.0 (Android) 

SHA1-Digest-Manifest: 

h9xNllN3bQiTJ8RQyPUWBojRKD8= 

X-Android-APK-Signed: 2 

 

Name: res/mipmap-hdpi-v4/ic_launcher.png 

SHA1-Digest: L8RpX5x8pChJbucqml+hMt9D9CQ= 

Manifest.mf Cert.sf 

hash 

hash 

ic_launcher.png 

File 

Certificate Cert.sf signature 

CERT.{RSA,DSA} 



Verifying of package manifest 
Chain of trust: 
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ANDROID SECURITY 

ARCHITECTURE 
• Package Integrity 

• Sandboxing 

• Permission and Least Privilege 

15 



Sandboxing 
 

The application sandbox specifies which system resources the 

application is allowed to access 

An attacker can only perform actions defined in the sandbox 
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Application Isolation by Sandboxing 
Each Application is isolated in its own environment 

Applications can access only its own resources 

Access to sensitive resources depends on the application’s rights 

Sandboxing is enforced by Linux 

No rights to 

“internet” 
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Application sandbox 
Isolation: Each installed App has 

a separate user ID 

Each App lives in its own sandbox 
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Application sandbox 
Isolation: Each installed App has 

a separate user ID 

Each App lives in its own sandbox 
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ANDROID SECURITY 

ARCHITECTURE 
• Package Integrity 

• Sandboxing 

• Permission and Least Privilege 
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Android Permission System 
Access rights in Android’s application framework 

Permissions are required to gain access to 

 System interfaces (Internet, send SMS, etc.) 

 System resources (logs, battery, etc.) 

 Sensitive data (SMS, contacts, etc.) 

Currently more than 140 default permissions defined in Android 

Permissions are assigned to sandbox 

Application developers can also define their own permissions 
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Android Permission: Example 
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Permissions’ Protection Level 
Normal 

Dangerous 

Signature 

SignatureOrSystem 
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Dynamic Permissions (≥ Android 6.0) 
App developers must check if their apps hold required dangerous 

permission, otherwise request them at runtime 

User can grant permissions at runtime and also revoke once granted 

permissions again 
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permissions? 



ANDROID VULNERABILITIES 
• Architecture Based 

• Software Based 

• Hardware Based 
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Vulnerability Classification 
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Android Vulnerability 

Architecture Software Hardware 

Operating System Third Party App 
Original Equipment 

Manufacturer (OEM) 



ANDROID VULNERABILITIES 
• Architecture Based 

• Software Based 

• Hardware Based 
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Application-Level Privilege Escalation 

Attacks 
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Collusion Attack 
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Malicious apps collude in 

order to merge their 

respective permissions 
Variants: 

Apps communicate directly 

Apps communicate via covert channels in Android 



ANDROID VULNERABILITIES 
• Architecture Based 

• Software Based 

• Hardware Based 
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Dirty COW 
Existed in the Linux Kernel for 9 years 

A local Privilege Escalation Vulnerability 

Exploits a race condition in the implementation of the copy-on-write 

mechanism 

Turns a read-only mapping of a file into a writable mapping 

 

31 Source: https://nakedsecurity.sophos.com/2017/09/29/android-malware-zniu-exploits-dirtycow-vulnerability/ 



Media Projection Service Issue 
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Source: https://latesthackingnews.com/2017/11/20/android-issue-allows-attackers-to-capture-screen-and-record-audio-

on-77-of-all-devices/ 



Over-privileged Apps 
Many apps request permissions that their functionality does not 

require 

Suspected root cause: API documentation/naming convention  

Solution: API Permissions Maps 

 Can be integrated into lint tools 
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Confused Deputy Attack 

A privileged app is fooled into misusing its privileges on behalf of 

another (malicious) unprivileged app 

 

Example: 

Unauthorized phone calls 

Various confused deputies in system apps 

Unprivileged App Protected Resources Privileged App 
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Confused Deputy Introduce by OEMs 
Several confused deputies found in Samsung devices’ firmware 

One deputy running with system privileges provided root shell service to 

any app 

35 

Internet 

Contacts 

GPS Location Access to SD card 

Access to mail account 

Camera 

Microphone 

SMS & MMS 

Backdoor 



ANDROID VULNERABILITIES 
• Architecture Based 

• Software Based 

• Hardware Based 

36 



Broadcom Wi-Fi SoC Flaw 
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Source: https://arstechnica.com/information-technology/2017/04/wide-range-of-android-phones-vulnerable-to-device-

hijacks-over-wi-fi/ 



ADVANCED THREAT 
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Dynamic Code Loading: Techniques and 

Risks 

Techniques API Risk 
Code Injection 

Vector 

Class loader DexClassLoader 

No checking of 

Integrity or 
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Attacker can 

control loaded 

code 

Package 

Context 
createPackageContext 
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from same developer 

Attacker can install 

app 

Native Code Java Native Interface 
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location 

Manipulate the 

native code to 

inject code 
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Android Instant App 

40 

Source: https://www.theverge.com/2016/5/18/11705918/google-instant-apps-android-hands-on-video 

Source: https://www.theverge.com/2017/5/17/15649372/google-android-instant-apps-available-io-2017 



MALWARE ANALYSIS 
• Analysis Techniques and Their Limitations 

41 
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Source: https://www.zdnet.com/article/this-data-stealing-android-malware-infiltrated-the-google-play-store-infecting-

users-in-196-countries/ 

Source: https://thehackernews.com/2019/02/beauty-camera-android-apps.html 

Source: https://thehackernews.com/2019/02/android-clickboard-hijacking.html 

Source: https://www.techradar.com/news/android-banking-malware-hitting-more-

users-than-ever 

Why Malware Analysis? 



In every 10 seconds, A 

new Android malware 

is born. 

Android Malware Statistics 

43 Source: AV-TEST malware statistics report Jan 2022 
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Analysis Techniques 
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Analysis Technique 

Static Hybrid Dynamic 



Malware Analysis 
Many work has been proposed 

Deployed on 

Server 

Real Device 

Offline analysis can be 

bypassed 

On a real device, existing 

offline method  cannot be used  

High resources requirement 

45 

Server 

(Offline) 

Real Device 

(Online) 

Static and 

Dynamic 
Static 

Limited 

resources 

Unlimited 

resources 

Emulation Overhead Cross-layer 

Existing 

offline 

method 



Analysis Techniques Challenges 
Techniques Challenges 

Static • Dynamically Loaded Code 

• Crypto API 

• Java Reflection 

• False positive (permission based) 

• Network based activity 

Dynamic • False positive (Anomaly based) 

• Code Coverage 

• 20 times slowdown system if used in real device 

Hybrid • Data Dependency ACG 

• Logic based triggers 

• Obfuscation and reflection 

46 



Malware Analysis Frameworks 
Framework Method Limitation 

Aurasium [Xu et al. 2012] Dynamic – detect API misuse Native code, java refl.,  

DroidScope [Yan and yin 2012] Dynamic + virt. Emulation-detection, Cross-layer 

SmartDroid [Zheng et al. 2012] 
Statically find activity path + dynamic to 

find triggers 
Native code 

Jin et  al. [2013] Dynamic (SDN traffic monitoring) Encrypted traffic 

SAAF [Hoffmann et al. 2013] Static (smali) auto and optional manual Reflection, native code 

RiskMon [Jing et al. 2014] 
Dynamic + machine learning + API 

monitor 
Colluding apps 

Drebin [Arp et al. 2014] 
Static (features from Manifest + dex 

code) + machine learning 

Colluding apps, Obfuscation, 

Dynamic code, Native code 

DroidSafe [Gordan et al. 2015] Static information flow + hooks + calls 

that start activity 

Cross-layer, Emulation-detection 
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Malware Analysis Frameworks Cont.. 
Framework Method Limitation 

Wang et al. [2016] 
Static + machine learning + 

permissions + APIs 

Dynamic code loading, Native 

code, obfuscation 

DroidSeive [Guillermo et al. 2017] 
Static + machine learning + 

multiple location features 
Dynamic code loading 

IntelliAV:[Ahmadi, et al. 2017] 
Static + machine learning + API 

Call, Components statistics 

Dynamic code loading, Native 

code, obfuscation 

TinyDroid [Chen et al. 2018] 
Static + Opcode + machine 

learning 
Dynamic code loading, Native code 

Fatima et al. [2019] 
Static + machine learning + 

permissions 

Dynamic code loading, Native 

code, repackaging attack 
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Analysis Techniques used in Different 

Area 
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CHALLENGES AND FUTURE 

DIRECTIONS 
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Challenges in Android Security 
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Android Instant Apps 

Device Fragmentation 

Cheap Devices 

Colluding Apps 

Platform Sensing Malware 



Future Research Direction 
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Basic simple app Analysis to analyze whole system 

Consider dynamically loaded code that is not bundled with installed 

packages 

Analyze code of different forms and from different languages 

Native (C/C++), Obfuscated Code 

Colluding malware analysis 

Stealthy Dynamic Analyzer 
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