
Mobile Security: Android
Saurabh Kumar

Senior Research Scholar

IIT Kanpur

Date: 09/03/2022

https://github.com/skmtr1/Workshop-Mobile-Forensics-And-Security

MOTIVATION

2

Why Mobile Security?
User activity

Valuable data

Always on

Multiple Attack Surfaces

3

Mobile Device

Internet

WiFi

Telecom
Provider

Web
sites

Mobile
apps

Corporate Intranet & Systems /
Personal computers Connectivity

Public Place
Chargers

Why Android?

4 Source: International Data Corporation (IDC), October 2021

Period Android iOS Others

2020 84.1% 15.9% 0%

2021 83.8% 16.2% 0%

2022 84.1% 15.9% 0%

2023 84.4% 15.6% 0%

2024 84.7% 15.3% 0%

2025 84.9% 15.1% 0%

1. Almost completely open source

2. Global smartphone market share

Publish app
App Developer

Tool chain

(Cordova, App generator, …)

Sideloading

Publish app

Alternate Store Play Store

Configure

Administrators

Platform vendors
Advertisement

networks

Online services

Application Framework

Native libs

(C / C++)

Linux Kernel (modified)

Android Runtime

(Dalvik / ART)

Third Party app Ad Libs

Use Tools

5

Actors in the Android Ecosystem

Security Impact of an Actor Over Others

6

Actor O
S

D
e
v

e
lo

p
e

r

H
/W

V
e

n
d

o
r

L
ib

ra
ry

P
ro

v
id

e
rs

S
/W

D
e
v

e
lo

p
e

r

T
o

o
lc

h
a

in

P
ro

v
id

e
rs

S
/W

P
u

b
li

s
h

e
r

S
/W

M
a

rk
e

t

E
n

d
 U

s
e

r

OS Developer -- Partial Full Full Partial Full Full Full

H/W Vendor None -- Full Full None None None Full

Library Provider None None -- Full None None None Full

S/W Developer None None Partial -- None None None Full

Toolchain Providers None None None Full -- None None Partial

S/W Publisher None None Partial Partial None -- Partial Full

S/W Market None None Partial Partial None None -- Full

End User None None None None None None None --

Where to Improve Security?

7

Tool Chain

Provider

3rd party

libraries

App developer

Markets

Web Services

Ad & Analytics

Network

Installed Apps

Middleware

Linux Kernel

Uses tool chains

Includes

libraries
Publish App

Install

Use via internet

Android API

Linux API

Android Platform

Useable Security

Application Vetting

Inline reference

monitors

Retrofit Android’s

Security

MOTIVATION: SUMMARY
Feature-rich smartphones and appification have induced security

research on various new aspects

Android’s market share has made Android the #1 target for malware

authors and makes improved security & privacy mechanisms

imperative

Various actors in the ecosystem with (strong) influence on security

and privacy

8

ANDROID BACKGROUND

9

Android Software Stack

10

Default apps

Contacts SMS

Application Framework

Third party apps

paytm linkedin

Native libs

(C / C++)

Linux Kernel (modified)

Android Runtime

(Dalvik / ART)

Application Packages (APK)
APK is simply a packaging format like JAR, ZIP and TAR

Component of Application

Activity

Content Provider

Services

Broadcast Receiver

Native Code (C/C++ shared libraries)

Resources

META-INF

Application Manifest

Classes.dex Native Libs Resources META-INF Application

Manifest

11

ANDROID SECURITY

ARCHITECTURE
• Package Integrity

• Sandboxing

• Permission and Least Privilege

12

Package Integrity: Package Manifest
Created with jarsigner

META-INF

Manifest.mf, Cert.sf, Cert.{RSA,DSA}

13

Manifest-Version: 1.0

Built-By: Generated-by-ADT

Created-By: Android Gradle 3.0.1

Name: res/mipmap-hdpi-v4/ic_launcher.png

SHA1-Digest: 2zkIQdtvlXqEHSTVOVuwBQ18aIs=

Signature-Version: 1.0

Created-By: 1.0 (Android)

SHA1-Digest-Manifest:

h9xNllN3bQiTJ8RQyPUWBojRKD8=

X-Android-APK-Signed: 2

Name: res/mipmap-hdpi-v4/ic_launcher.png

SHA1-Digest: L8RpX5x8pChJbucqml+hMt9D9CQ=

Manifest.mf Cert.sf

hash

hash

ic_launcher.png

File

Certificate Cert.sf signature

CERT.{RSA,DSA}

Verifying of package manifest
Chain of trust:

14

PKI
Package certificate

in Cert.{RSA,DSA}

Cert.sf Manifest.mf

Files

ANDROID SECURITY

ARCHITECTURE
• Package Integrity

• Sandboxing

• Permission and Least Privilege

15

Sandboxing

The application sandbox specifies which system resources the

application is allowed to access

An attacker can only perform actions defined in the sandbox

16

Application Isolation by Sandboxing
Each Application is isolated in its own environment

Applications can access only its own resources

Access to sensitive resources depends on the application’s rights

Sandboxing is enforced by Linux

No rights to

“internet”

17

Application sandbox
Isolation: Each installed App has

a separate user ID

Each App lives in its own sandbox

App Code

(Classes.dex)

Core libraries

syscalls

Kernel

Native Code

(*.so)

J
N

I

UID A

18

Application sandbox
Isolation: Each installed App has

a separate user ID

Each App lives in its own sandbox

Kernel

App Code

(Classes.dex)

Core

libraries
Native Code

(*.so)

J
N

I

UID A

App Code

(Classes.dex)

Core

libraries
Native Code

(*.so)

J
N

I

UID B

App Code

(Classes.dex)

Core

libraries
Native Code

(*.so)

J
N

I

UID C

Process boundary Process boundary

19

ANDROID SECURITY

ARCHITECTURE
• Package Integrity

• Sandboxing

• Permission and Least Privilege

20

Android Permission System
Access rights in Android’s application framework

Permissions are required to gain access to

 System interfaces (Internet, send SMS, etc.)

 System resources (logs, battery, etc.)

 Sensitive data (SMS, contacts, etc.)

Currently more than 140 default permissions defined in Android

Permissions are assigned to sandbox

Application developers can also define their own permissions

21

Android Permission: Example

App B
(has permission P)

App C
(has not permission P)

App A

S
e
rv

ic
e

(P
e
rm

is
s
io

n
 P

)

22

Permissions’ Protection Level
Normal

Dangerous

Signature

SignatureOrSystem

23

Dynamic Permissions (≥ Android 6.0)
App developers must check if their apps hold required dangerous

permission, otherwise request them at runtime

User can grant permissions at runtime and also revoke once granted

permissions again

24

Is the requested

permission

reasonable?

Should I

adjust some

permissions?

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

25

Vulnerability Classification

26

Android Vulnerability

Architecture Software Hardware

Operating System Third Party App
Original Equipment

Manufacturer (OEM)

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

27

Application-Level Privilege Escalation

Attacks

28

Confused

Deputy

Attack

Collusion

Attack

Malicious App

Malicious App Malicious App

Confused Deputy App

Collusion Attack

29

Malicious apps collude in

order to merge their

respective permissions
Variants:

Apps communicate directly

Apps communicate via covert channels in Android

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

30

Dirty COW
Existed in the Linux Kernel for 9 years

A local Privilege Escalation Vulnerability

Exploits a race condition in the implementation of the copy-on-write

mechanism

Turns a read-only mapping of a file into a writable mapping

31 Source: https://nakedsecurity.sophos.com/2017/09/29/android-malware-zniu-exploits-dirtycow-vulnerability/

Media Projection Service Issue

32

Source: https://latesthackingnews.com/2017/11/20/android-issue-allows-attackers-to-capture-screen-and-record-audio-

on-77-of-all-devices/

Over-privileged Apps
Many apps request permissions that their functionality does not

require

Suspected root cause: API documentation/naming convention

Solution: API Permissions Maps

 Can be integrated into lint tools

33

API1

API2

API3

Perm1

Perm2

Perm3

Confused Deputy Attack

A privileged app is fooled into misusing its privileges on behalf of

another (malicious) unprivileged app

Example:

Unauthorized phone calls

Various confused deputies in system apps

Unprivileged App Protected Resources Privileged App

34

Confused Deputy Introduce by OEMs
Several confused deputies found in Samsung devices’ firmware

One deputy running with system privileges provided root shell service to

any app

35

Internet

Contacts

GPS Location Access to SD card

Access to mail account

Camera

Microphone

SMS & MMS

Backdoor

ANDROID VULNERABILITIES
• Architecture Based

• Software Based

• Hardware Based

36

Broadcom Wi-Fi SoC Flaw

37

Source: https://arstechnica.com/information-technology/2017/04/wide-range-of-android-phones-vulnerable-to-device-

hijacks-over-wi-fi/

MALWARE ANALYSIS

38

WHY MALWARE ANALYSIS?

39

Source: https://www.zdnet.com/article/this-data-stealing-android-malware-infiltrated-the-google-play-store-infecting-

users-in-196-countries/

Source: https://thehackernews.com/2019/02/beauty-camera-android-apps.html

Source: https://thehackernews.com/2019/02/android-clickboard-hijacking.html
Source: https://www.techradar.com/news/android-banking-malware-hitting-more-

users-than-ever

In every 10 seconds, A

new Android malware

is born.

Android Malware Statistics

40 Source: AV-TEST malware statistics report Jan 2022

0
.9

4

1
.0

2

2
.5

7

6
.1

3

6
.2

0

5
.5

4

3
.2

0

3
.1

3

3
.3

9

0

1

2

3

4

5

6

7

8

2013 2014 2015 2016 2017 2018 2019 2020 2021

M
ill

io
n
s

New Android malware samples per year

Analysis Techniques

41

Analysis Technique

Static Hybrid Dynamic

Malware Analysis
Many work has been proposed

Deployed on

Server

Real Device

Offline analysis can be

bypassed

On a real device, existing

offline method cannot be used

High resources requirement

42

Server

(Offline)

Real Device

(Online)

Static and

Dynamic
Static

Limited

resources

Unlimited

resources

Emulation Overhead Cross-layer

Existing

offline

method

43

Challenges:

Dynamic Analysis

Android Emulator
A virtual mobile device

Use Case:

Prototype, develop and test an application

Dynamic Analysis of malware

 Used by security companies

44

Emulation-Detection

45

Detection methods are classified in 5 category

Unique Device Information (basic and smart)

Sensors Reading

GPS Information

Device State Information

Distributed Detection

Unique Device Information
Basic

Unrealistic/null

value for IMEI,

Phone No. etc.

Smart

Realistic but fixed

values

46

ICCID IMEI Phone No.

89XXXXX5611117910720 123456XXXXX2347 901XXXXX36

89XXXXX3211118510720 155XXXXX554 null/00000000000

89XXXXX0082067415160 972XXXXX243 3514XXXXX401216

89XXXXX0082067415160 972XXXXX243 3514XXXXX401216

Sensors
Different sensors in a smart phone

Motion Sensors: accelerometer, gyroscope

Environmental Sensors: illumination (light),

humidity

Detection:

Count: At least 6-7 or more sensors in a

smartphone

Reading: No change in sensors reading

47

GPS Information
No change in GPS location

Use of mock location API to provide

fake location

No correlation with BTS geo-

location

48

𝒙 𝒎𝒆𝒕𝒆𝒓𝒔

Device State Information
Smartphone state may change due to:

Battery power

Signal Strength

SMS

Call

No state change in emulated platform

49

Emulated?

Distributed Detection
Detection on server

App communicates with server

Observing identical information for

multiple device like IMEI

Example:

Botnet analysis

50

IM
E

I-
3

IMEI-2 HTTP Flood

HTTP Flood

Client No.

Client-1

Client-2

Client-3

Client-4 IMEI-3

IMEI-3

IMEI-1

IMEI-2

IMEI

C&C

Server

Existing Frameworks Evaluation
Detection Type Emulator DroidBox CuckooDroid MobSF

Unique ID (Basic)

Unique ID (Smart)

Sensors reading

Device State

GPS

Distributed Detection

51

Every framework fails to defend against all the detection method

except for basic unique ID

Summary: Emulation Detection
Existing framework fails to defend against detection method:

Smart unique device information

Sensors and GPS information

Device state

Distributed detection

Need a robust anti-emulation-detection system:

Hides underline emulated platform

Remain undetected when attack is performed from any layer

52

Reference for More Details
Robust Anti-Emulation-Detection

 https://www.youtube.com/watch?v=ahAgW4Wj3qc

On-Device Android Malware Detection

 https://www.youtube.com/watch?v=ziwIJGttkYg

53

https://www.youtube.com/watch?v=ahAgW4Wj3qc
https://www.youtube.com/watch?v=ziwIJGttkYg

CASE STUDY: ANALYSIS OF

PEGASUS MALWARE

54

Pegasus: Attack Vector and

Capabiliteis

55

Email

SMS

Web Browsing

Social Media

Unknown

Vulnerability

Email

SMS

Photos

Location data

Contacts

Activate microphone

Activate camera

Record calls

Calendar

Social media chat

Attack Vector. Capabilities

Data Collection
Samples were collected from CloudSek

Total 5 Apps

App-1 and App-3 are same only file name is different

56

App ID File Name

App-1 9fae5d148b89001555132c896879652fe1ca633d35271db34622248e048c78ae.apk

App-2 144778790d4a43a1d93dff6b660a6acb3a6d37a19e6a6f0a6bf1ef47e919648e.apk

App-3 cc9517aafb58279091ac17533293edc1.apk

App-4 d257cfde7599f4e20ee08a62053e6b3b936c87d373e6805f0e0c65f1d39ec320.apk

App-5 bd8cda80aaee3e4a17e9967a1c062ac5c8e4aefd7eaa3362f54044c2c94db52a.apk

Analysis Type and Environment
Static

Androguard

Dynamic

STDNeut: Neutralizing Sensor, Telephony System and Device State

Information on Emulated Android Environments

Xposed framework to monitor API calls

SysCallMon: A system call monitoring Kernel module

57

58

Analysis Result

App-1 and App-3

59

Meta Information
• Package Name: com.binary.sms.receiver

• Modification Date: 2 June, 2014

• Hash: 9fae5d148b89001555132c896879652fe1ca633d35271db34622248e048c78ae

 Server Communication

IP/URLs Port Geo Location

142.XXX.27.188
443 Mountain View,

California, USA 5228

App-1 and App-3 cont..

60

System Command
• chmod, mount, su

Capability
• Install new applications

• Make a call, listen or record incoming/outgoing call

• Read/Write contacts, bookmark,

• Many more…

App-1 and App-3 cont..

61

Observation:
• Tries to get root privilege

• Change file permissions

• Mount system partition as R/W

• Intercept incoming/outgoing SMS and Calls

• Obtain information about installed and running apps

• Can install new apps

• Read other information like contacts, history bookmarks,

• Read/write system settings,

• Process outgoing calls and send new SMS

• Delete call logs and many more.

App-2

62

Meta Information
• Package Name: com.lenovo.safecenter

• Modification Date: 16 Dec, 2010

• Hash: 144778790d4a43a1d93dff6b660a6acb3a6d37a19e6a6f0a6bf1ef47e919648e

 Server Communication

IP/URLs Port Geo Location

142.XXX.102.188
443 Mountain View,

California, USA 5228

142.XXX.5.188
443 Mountain View,

California, USA 5228

App-2 cont..

63

System Command
• app_process, bind, cat, chmod, chown, close, connect, date, dumpsys,

echo, exit, gzip, id, iptables, kill, log, logcat, ls, mkdir, mount, mv, notify,

open, pm, ps, pwd, read, reboot, sdcard, select, service, sh, socket, start,

su, system_server, times, uptime, write

Capability
• Make a call, send new SMS

• Read/Write contacts, system settings,

• Process outgoing calls

• Access location data

• Kill background processes

• Many more…

App-2 cont..

64

Observation:
• Capable to bypass dynamic analysis using device information

• Tries to get root privilege

• Can change files permission

• Mount system partitions as RW

• Open network sockets

• Get running process information and kill any process

• Dynamically load code, end an incoming call, kill background processes

• Remove any app

• Register a broadcast receiver to intercept incoming SMS

App-4

65

Meta Information
• Package Name: com.xxGameAssistant.pao

• Modification Date: 15 Nov, 2013

• Hash: d257cfde7599f4e20ee08a62053e6b3b936c87d373e6805f0e0c65f1d39ec320

 System Command
• Chmod, dd, ln, mkdir, mount, stop, su

Capability
• Read Phone state

• Access location data

• Listen to boot complete event

• Read/Write to external storage

App-4

66

Server Communication

 IP/URLs Port/Protocol Geo Location

http://tdcv3.talkingdata.net/g/d HTTP
Kansas City, Missouri,

USA
http://tdcv3.talkingdata.net DNS

35.XXX.63.213 --

142.XXX.188.196 --

Mountain View, California,

USA

142.XXX.102.188 --

142.XXX.27.188 --

142.XXX.5.188 --

App-4 cont..

67

Observation:
• Tries to get root privilege

• Can change files permission

• Mount system partitions as R/W

• Capable to bypass dynamic analysis using device & CPU information

• Can install apps,

• Get information about the currently installed/running App, processes and

tasks

• Track location and steal sensitive information like device Ids, phone

numbers and others

• Listen to BOOT COMPLETE event so that it can run a code or background

process when a phone restarts.

App-5

68

Only static analysis
• Dex file is tempered, hence no dynamic analysis

Meta Information
• Package Name: sec.dujmehn.qdtheyt

• Modification Date: 10 Nov, 2018 based on last modified content

• Hash: bd8cda80aaee3e4a17e9967a1c062ac5c8e4aefd7eaa3362f54044c2c94db52a

App-5 cont..

69

Capability
• Install new applications

• Make a call, listen or record incoming/outgoing call

• Read/Write contacts, bookmark,

• Access to location data

• Send and read SMS

• Kill background process

• Set fake location information

• Many more…

App-5 cont..

70

Observation:
• Can change files permissions

• Mount system partitions as R/W.

• Can get information about currently installed/running apps, processes and

tasks

• Track location and steal sensitive information like device Ids, phone

numbers and others.

• Listen to BOOT COMPLETE, NEW SMS, OUTGOING CALLS, BATTERY

STATUS CHANGED, and many other events

• Can run a code or background process when any of such event occurs

• Ability to change system configuration, R/W contacts, bookmark history,

• Record audio in background, install apps

Connection Between Apps

71

App-2

App-1

App-3

App-5

App-4

142.XXX.102.188,

142.XXX.5.188

142.XXX.27.188

35.XXX.63.213,

142.XXX.188.196

tdcv3.talkingdata.net

Detection of Pegasus
Used DeepDetect, machine learning based Android malware detector

Static features from Manifest File and Dex code

Results

72

App ID Detection Result

App-1

App-2

App-3

App-4

App-5

 (Only based on Android Manifest file)

https://github.com/skmtr1/Workshop-Mobile-Forensics-And-Security

74

