
Techkriti-2019

SECURITY OF MOBILE PLATFORMS:

ANDROID SECURITY

OUTLINE

2

 Motivation

 Android Application

 Android Security Architecture

 Android Vulnerability

 Advanced Threat

 Malware Analysis

 Hands On

MOTIVATION

• Why Mobile Security?

• Why Android?

• Android Ecosystem

WHY MOBILE SECURITY?

 Technology improvements

 User activity

 Always on

 Valuable data

 Multiple Attack Surfaces

4

Secure endpoint
device and data

Secure access to enterprise applications
and data

Develop, test
and deliver safe

applications

Internet

WiFi

Telecom
Provider

Web
sites

Mobile
apps

Security
Gateway

Corporate
Intranet &
Systems Achieve Visibility and Enable

Adaptive Security

Public Place
Chargers

MOTIVATION

• Why Mobile Security?

• Why Android?

• Android Ecosystem

1. ALMOST COMPLETELY OPEN SOURCE

Source: https://giphy.com/gifs/southparkgifs-3o6ZtqprcPDOkDru5W

6

2. THE MARKET

GLOBAL SMARTPHONE MARKET TRENDS

Source: International Data Corporation (IDC), May 2017

Period Android iOS Windows Others

Q1 2016 83.4% 15.4% 0.8% 0.4%

Q2 2016 87.6% 11.7% 0.4% 0.3%

Q3 2016 86.6% 12.5% 0.3% 0.4%

Q4 2016 81.4% 18.2% 0.2% 0.2%

Q1 2017 85% 14.7% 0.1% 0.1%

7

MOTIVATION

• Why Mobile Security?

• Why Android?

• Android Ecosystem

ACTORS IN THE ANDROID ECOSYSTEM

App Developer
Tool chain

(Coredova, App generator, …)

Sideloading

Publish app Publish app

Alternate markets Google Play

Configure

Administrators

Platform vendors
Advertisement

networks

Online services

Application Framework

Native libs

(C / C++)

Linux Kernel (modified)

Android Runtime

(Dalvik / ART)

Third Party app
Ad Libs

Use Tools

9
1. Y. Acar et al., "SoK: Lessons Learned From Android Security Research For Appified Software Platforms,” SP ’16

WHERE TO IMPROVE SECURITY & PRIVACY

PROTECTION?

Tool Chain Provider

3rd party libraries

App developer

Markets

Web Services

Ad & Analytics

Network

Installed Apps

Middleware

Linux Kernel

Uses tool chains

Includes libraries Publish App

Install

Use via internet

Android API

Linux API

Android Platform 10

Useable Security

Application

Vetting

Inline reference

monitors

Retrofit Android’s

Security

SECURITY IMPACT OF AN ACTOR OVER OTHERS1

Actor O
S

D
ev

e
lo

p
e

r

H
/

W
 V

e
n

d
o

r

L
ib

ra
ry

 P
ro

v
id

e
r

S/
W

 D
ev

e
lo

p
e

r

T
o

o
lc

h
ai

n
 P

ro
v

id
e

r

S/
W

 P
u

b
li

sh
e

r

S/
W

 M
ar

k
e

t

 E
n

d
 U

se
r

OS Developer -- Partial Full Full Partial Full Full Full

H/W Vendor None -- Full Full None None None Full

Library Provider None None -- Full None None None Full

S/W Developer None None Partial -- None None None Full

Toolchain Provider None None None Full -- None None Partial

S/W Publisher None None Partial Partial None -- Partial Full

S/W Market None None Partial Partial None None -- Full

End User None None None None None None None --
11

1. Y. Acar et al., "SoK: Lessons Learned From Android Security Research For Appified Software Platforms,” SP ’16

MOTIVATION: SUMMARY

 Feature-rich smartphones and appification have

induced security research on various new aspects

 Android’s market share has made Android the #1 target

for malware authors and makes improved security & privacy

mechanisms imperative

 Various actors in the ecosystem with (strong) influence on

security and privacy

12

ANDROID APPLICATIONS

ANDROID SOFTWARE STACK

14

Default apps

Contacts SMS

Application Framework

Third party apps

paytm linkedin

Native libs

(C / C++)

Linux Kernel (modified)

Android Runtime

(Dalvik / ART)

APPLICATION PACKAGES (APK)

 APK is simply a packaging format like JAR, ZIP and TAR

 Component of Application

 Activity

 Content Provider

 Services

 Broadcast Receiver

 Native Code (C/C++ shared libraries)

 Resources

 META-INF

 Application Manifest

Classes.dex Native Libs Resources META-INF Application

Manifest

15

ANDROID SECURITY ARCHITECTURE

• Package Integrity

• Sandboxing

• Permission and Least Privilege

PACKAGE INTEGRITY: PACKAGE MANIFEST

 Created with jarsigner

 META-INF

 Manifest.mf

 Cert.sf

 Cert.{RSA,DSA}

Certificate Cert.sf signature

CERT.{RSA,DSA}

Manifest-Version: 1.0

Built-By: Generated-by-ADT

Created-By: Android Gradle 3.0.1

Name: res/mipmap-hdpi-v4/ic_launcher.png

SHA1-Digest: 2zkIQdtvlXqEHSTVOVuwBQ18aIs=

Signature-Version: 1.0

Created-By: 1.0 (Android)

SHA1-Digest-Manifest:

h9xNllN3bQiTJ8RQyPUWBojRKD8=

X-Android-APK-Signed: 2

Name: res/mipmap-hdpi-v4/ic_launcher.png

SHA1-Digest: L8RpX5x8pChJbucqml+hMt9D9CQ=

Manifest.mf Cert.sf

hash
hash

ic_launcher.png

File

17

VERIFYING OF PACKAGE MANIFEST

Chain of trust:

PKI
Package certificate in

Cert.{RSA,DSA}

Cert.sf Manifest.mf

Files

18

ANDROID SECURITY ARCHITECTURE

• Package Integrity

• Sandboxing

• Permission and Least Privilege

SANDBOXING

 The application sandbox specifies which system resources

the application is allowed to access

 An attacker can only perform actions defined in the

sandbox

20

APPLICATION ISOLATION BY SANDBOXING

 Each Application is isolated in its own environment

 Applications can access only its own resources

 Access to sensitive resources depends on the application’s

rights

 Sandboxing is enforced by Linux

No rights to

“internet”

21

APPLICATION SANDBOX

 Isolation: Each installed App

has a separate user ID

 Each App lives in its own

sandbox

App Code

(Classes.dex)

Core libraries

syscalls

Kernel

Native Code

(*.so)

JN
I

UID A

Kernel

App Code

(Classes.dex)

Core libraries
Native Code

(*.so)

JN
I

UID A

App Code

(Classes.dex)

Core libraries
Native Code

(*.so)

JN
I

UID B

App Code

(Classes.dex)

Core libraries
Native Code

(*.so)

JN
I

UID C

Process boundary Process boundary

22

ANDROID SECURITY ARCHITECTURE

• Package Integrity

• Sandboxing

• Permission and Least Privilege

ANDROID PERMISSION SYSTEM

 Access rights in Android’s application framework

 Permissions are required to gain access to

 System interfaces (Internet, send SMS, etc.)

 System resources (logs, battery, etc.)

 Sensitive data (SMS, contacts, etc.)

 Currently more than 140 default permissions defined in

Android

 Permissions are assigned to sandbox

 Application developers can also define their own

permissions

24

ANDROID PERMISSION: EXAMPLE

App B
(has permission P)

App C
(has not permission P)

App A

Se
rv

ic
e

(P
e

rm
issio

n
 P

)

25

PERMISSIONS’ PROTECTION LEVEL

 Normal

 Dangerous

 Signature

 SignatureOrSystem

26

Dynamic Permissions (≥ Android 6.0)

 App developers must check if their apps hold required

dangerous permission, otherwise request them at runtime

 User can grant permissions at runtime and also revoke

once granted permissions again

27

Is the

requested

permission

reasonable?

Should I adjust

some

permissions?

ANDROID VULNERABILITIES

• Architecture Based

• Software Based

• Hardware Based

VULNERABILITY CLASSIFICATION

29

Android Vulnerability

Architecture Software Hardware

Operating System Third Party App
Original Equipment

Manufacturer (OEM)

ANDROID VULNERABILITY

• Architecture Based

• Software Based

• Hardware Based

APPLICATION-LEVEL PRIVILEGE ESCALATION ATTACK

Confused

Deputy

Attack

Collusion

Attack

Malicious App

Malicious App Malicious App

Confused Deputy App

31

COLLUSION ATTACK

 Variants:

 Apps communicate directly

 Apps communicate via covert2 channels in Android

Malicious App A

(internet) Protected Resources
Malicious App B

(contacts)

Android OS

B. 1) B. 2)

A)

Malicious apps collude in

order to merge their

respective permissions1

32 1. S. Karthick et al. "Android security issues and solutions," ICIMIA’17

2. C. Marforio et al. , “Analysis of the communication between colluding applications on modern smartphones,” ACSAC’12

ANDROID VULNERABILITY

• Architecture Based

• Software Based

• Hardware Based

DIRTY COW

34

 Existed in the Linux Kernel for 9 years

 A local Privilege Escalation Vulnerability

 Exploits a race condition in the implementation of the

 copy-on-write mechanism

 Turns a read-only mapping of a file into a writable mapping

Source: https://nakedsecurity.sophos.com/2017/09/29/android-malware-zniu-exploits-dirtycow-vulnerability/

MEDIA PROJECTION SERVICE ISSUE

35

Source: https://latesthackingnews.com/2017/11/20/android-issue-allows-attackers-to-capture-screen-and-record-audio-on-77-of-all-devices/

DYNAMIC PERMISSION1

 Is the context of the permission request better recognizable?

 Invisible Permissions: 75.1%

 Screen off (60%)

 Invisible service (14.4%)

 Background app (0.7 %)

 Non-indicative indicators: Location icon is visible for only

0.04% of all accesses to location

 Around 8 requests/min

 Location: 10,960 / day

 Reading SMS: 611 / day

 Browser history: 19 / day

36
1. P. Wijesekera et al., “Android permissions remystified: A field study on contextual integrity,” SEC’15

OVER-PRIVILEGED APPS1

 Many apps request permissions that their functionality

does not require

 Suspected root cause: API documentation/naming

convention

 Solution: API Permissions Maps

 Can be integrated into lint tools

API1

API2

API3

Perm1

Perm2

Perm3

37
1. M. Backes et al., “On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis,” SEC’16

CONFUSED DEPUTY ATTACK

 A privileged app is fooled into misusing its privileges on

behalf of another (malicious) unprivileged app1

 Example:

 Unauthorized phone calls2

 Various confused deputies in system apps3

Unprivileged App Protected Resources Privileged App

38
1. S. Karthick et al. "Android security issues and solutions," ICIMIA’17

2. W. Enck et al., “On lightweight mobile phone application certification,” CCS’09

3. A. Porter Felt et al., “Permission re-delegation: Attacks and defenses,” SEC’11

CONFUSED DEPUTY INTRODUCE BY OEMS1

 Several confused deputies found in Samsung devices’

firmware

 One deputy running with system privileges provided root

shell service to any app

Internet

Contacts

GPS Location Access to SD card

Access to mail account

Camera

Microphone

SMS & MMS

Backdoor

39
1. A. Moulo, “Android OEM’s applications (in)security and backdoors without permission”

ANDROID VULNERABILITY

• Architecture Based

• Software Based

• Hardware Based

BROADCOM WI-FI SOC FLAW

41

Source: https://arstechnica.com/information-technology/2017/04/wide-range-of-android-phones-vulnerable-to-device-hijacks-over-wi-fi/

ADVANCED THREAT

RISK OF 3RD PARTY LIBRARIES
 Have to be included in every app package that wants to use the

lib

 Average 13 libs per app in top 3000 apps on Play1

 Library code, executed within the application process (same

UID), inherits the host app’s privileges

 no security boundary!

App Code

+ Library code

Core libraries

syscalls
Kernel

Native Code

JN
I

UID A

43
1. M. Backes et al., “Reliable third-party library detection in android and its security applications,” CCS’16

RISK OF 3RD PARTY LIBRARIES1,2

 Increase the host app’s attack surface

 Compromise the device or violate the user’s privacy

 De-anonymization risks through quasi-identifiers

 Has access to host app’s local files and external files

 Can collect clear picture about the user

 Gender, age, browsing history, user trajectories, etc.

44 1. S. Demetriou et al., ”Free for all! assessing user data exposure to advertising libraries on android,” NDSS’16, The Internet Society, 2016

2. S. Son et al., “What mobile ads know about mobile users,” NDSS’16, The Internet Society, 2016

MALWARE ANALYSIS

• Analysis Techniques and its Limitations

WHY MALWARE ANALYSIS?

46

Source: https://www.zdnet.com/article/this-data-stealing-android-malware-infiltrated-the-google-play-store-infecting-users-in-196-countries/

Source: https://thehackernews.com/2019/02/beauty-camera-android-apps.html

Source: https://thehackernews.com/2019/02/android-clickboard-hijacking.html
Source: https://www.techradar.com/news/android-banking-malware-hitting-more-users-than-ever

MALWARE STATISTICS

Source: https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day

47

MALWARE ANALYSIS TECHNIQUES

48

Analysis Technique

Static Hybrid Dynamic

ANALYSIS TECHNIQUES USED IN DIFFERENT AREA1

49

50 50

58

36
39

27

14
11

15

0

10

20

30

40

50

60

70

Malware Grayware Vulnerable

Static Dynamic Hybrid

1. A. Sadeghi et al., "A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software," in IEEE

Transactions on Software Engineering, June 1 2017

https://github.com/skmtr1/techkriti-2019-CS-workshop-Android/

