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Abstract. Sophisticated malware employs various emulation-detection
techniques to bypass the dynamic analysis systems that are running on
top of virtualized environments. Hence, a defense mechanism needs to
be incorporated in emulation based analysis platforms to mitigate the
emulation-detection strategies opted by malware. In this paper, first we
design an emulation-detection library that has configurable capabilities
ranging from basic to advanced detection techniques like distributed de-
tection and GPS information. We use this library to arm several exist-
ing malware with different levels of emulation-detection capabilities and
study the efficacy of anti-emulation-detection measures of well known
emulator driven dynamic analysis frameworks. Furthermore, we pro-
pose STDNeut (Sensor, Telephony system, and Device state information
Neutralizer) – a configurable anti-emulation-detection mechanism that
defends against the basic as well as advanced emulation-detection tech-
niques regardless of which layer of Android OS the attack is performed
on. Finally, we perform various experiments to show the effectiveness
of STDNeut. Experimental results show that STDNeut can effectively
execute a malware without being detected as an emulated platform.
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1 Introduction

Mobile platforms like Android are common in modern-day devices because of
its open-source availability and robust support for mobile application (App)
development. According to a recent report published by International Data Cor-
poration (IDC), the global market share of Android OS was 85.1% [16] in the
year 2018. As a consequence of such a large scale adoption of Android and ever-
increasing contributions in the Android App space, the security of these devices
has become a non-trivial challenge recently. A study related to malware activi-
ties in the Android platform published by G DATA shows that in the first half of
2018, more than 2 million new Android malware were recorded. In other words,
an Android malware is born in every seventh second [3].
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Existing approaches that address the security issues arising due to the rapid
growth of Android malware can be broadly classified into two categories: static
analysis based techniques and dynamic analysis/detection based techniques [30].
Techniques that are based only on static analysis [11,20,38] are insufficient to ad-
dress the security issues presented by the malware especially designed to bypass
the static analysis based defenses. For example, advanced malware employ tech-
niques such as dynamic code loading, native code exploitation, Java-reflection
mechanisms, and code encryption to bypass static analysis based detection [33].
In order to address the limitations of static analysis techniques, dynamic analy-
sis techniques are preferred. While dynamic analysis is widely used, the existing
frameworks fall short in tackling platform sensing malware which is a reality
today as emulator-based analysis platforms are used as opposed to real devices
for cost-effectiveness.

The problem: Many malware [36] employ techniques to detect the underly-
ing emulation platform before showing their true behavior. To the best of our
knowledge, none of the existing emulator driven dynamic analysis frameworks
make claims regarding their effectiveness towards nullifying possible emulation-
detection adopted by malware.

One of the root causes of the problems related to emulation-detection is
heavy usage of emulated platforms by dynamic analysis solutions. Many dynamic
analysis systems (Droidbox [21], MobSF [24], CuckooDroid [34], DroidScope [40],
CopperDroid [32], and Bouncer [22]) are based on virtualized environments to
perform malware analysis by executing the Apps in a controlled environment
and collect various event logs for further analysis. As a negative consequence,
malware developers utilize various emulation-detection techniques to detect the
underlying execution environment and adapt their behavior accordingly.

Identifying the underlying execution environment by a malware is shown
to be possible by many previous studies [18,25,27,36]. Recently, it has been
shown that the dynamic analysis performed for identifying malicious Apps by
the Google Bouncer (a dynamic analysis system deployed on Play Store) [22] can
be bypassed by detecting the underlying execution environment [25,27]. Vidas
et al. [36] present generic emulation-detection approaches that can be used to
evade dynamic analysis, whereas Morpheus et al. [18] show more than 10000
heuristics to detect underlying emulated platforms. In contrast, DroidBench-
3.0 [8], an open test suite for evaluating the effectiveness of an analysis system
includes a subset of small Apps (based on [36]), which can help in analyzing the
effectiveness of dynamic analysis frameworks. However, the emulation-detection
mechanisms used by DroidBench-3.0 Apps are very basic and many dynamic
analysis frameworks (e.g., CuckooDroid [34], Droidbox [21]) have already incor-
porated anti-emulation-detection measures in their design. Even though the dy-
namic analysis frameworks are capable of providing defense mechanisms against
rudimentary emulation-detection, malware developers find new ways to detect
the underlying execution environment at runtime [35]. For example, Google Play
Protect which is used to certify Android Apps, fails to detect malware that
spread across 85 different Apps affecting nine million Android devices [26].
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Our goal: We believe, a dynamic analysis system should provide a configurable
anti-emulation-detection mechanism, so that a smart malware developer would
find it difficult to evade the dynamic analysis by studying the analysis framework.
Moreover, we would like to emphasize the need for a validation mechanism to
understand the effectiveness of the same.
Our approach: As a validation mechanism, we design a pluggable emulation-
detection library with configurable levels of emulation-detection capabilities,
which can be incorporated by any malware. We use this library to arm several
existing malware with different levels of emulation-detection capabilities and
study the efficacy of anti-emulation-detection measures of well known dynamic
analysis frameworks. Further, using the findings of our analysis, we develop STD-
Neut (Sensor, Telephony system, and Device state information Neutralizer), a
detailed anti-emulation-detection system fully designed using Qemu [9] based
Android emulator [5].

A robust and extensible validation framework can provide the basis for under-
standing the effectiveness of existing dynamic analysis systems w.r.t. their anti-
emulation-detection measures. Moreover, the framework should provide guid-
ance principles for designing new dynamic analysis systems with detailed anti-
emulation-detection measures. Towards these objectives, our contributions are
as follows:
(i) We design an emulation-detection library encompassing several advanced de-
tection techniques like distributed detection and GPS information (Section 3.1).
We use this library to perform an empirical evaluation of existing dynamic anal-
ysis frameworks against the basic and extended emulation-detection techniques
(Section 3.2). The library can be configured with varying levels of emulation-
detection methods and can be embedded into different malware in a seamless
manner.
(ii) We propose STDNeut by using the insights of the empirical validation of
existing frameworks (Section 4) that remain undetected even if the emulation-
detection is performed at any layer of the Android OS w.r.t. sensors, telephony
system and device state. Further, we show the effectiveness of STDNeut in neu-
tralizing different emulation-detection techniques (Section 5). Note that, detec-
tion of an analysis framework by observing a rooted device or the existence of
an instrumentation framework like Xposed is beyond the scope of this paper.

2 Background and Related Work

In this section, we discuss the Base Transceiver Station (BTS) as a smartphone
frequently communicates with it. After that, we provide a brief overview of the
emulation-detection followed by the related work.

2.1 Base Transceiver Station

BTS [23] is a piece of wireless communication equipment that establishes com-
munication between a mobile device and a network. The BTS is associated with
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a base station ID that uniquely identifies a BTS worldwide. Base station ID com-
prises of four components: (i) mobile country code (MCC), (ii) mobile network
code (MNC), (iii) location area code (LAC), and (iv) a cell ID (CID). A combi-
nation of these gives a unique identity to a BTS. Several commercial and public
services are available which provide the geo-location of a cell by submitting its
station’s unique ID.

2.2 Emulation-detection

The primary issue with an emulated system is its inability to replicate a complete
system that matches the exact configuration and characteristics of a physical de-
vice. The core idea of emulation-detection is to observe the differences between
virtual and physical machines using a program to identify the underlying infras-
tructure. Vidas et al. [36] and Morpheus [18] have shown that such differences
can be used to detect underlying emulated platforms through a stand-alone App.
Vidas et al. [36] propose a few generic detection methods based on the device
characteristics, e.g., differences in hardware components (like sensors and CPU
information) and software components (like Google’s Apps are not present).
Morpheus [18] presents more than 10000 heuristics to detect the underlying em-
ulated platform which has broadly classified it into three categories viz. i) Files,
ii) APIs, and iii) System Properties related detection which are similar to the
techniques proposed in [36]. The emulation-detection methods shown in [18,36]
fall in the category of basic emulation-detection, and most of the dynamic anal-
ysis systems are capable of bypassing them.

2.3 Related Work

Static analysis techniques fail to capture the precise characteristics of an App
because of the advanced App development techniques like dynamic code loading
and reflection [33]. This has led to the introduction of a dynamic analysis of
Android Apps. Dynamic analysis techniques execute an App in a controlled
environment called “sandbox” which can be a real device or an emulated platform
to observe its behavior. Dynamic analysis on a real device is costly and incurs
significant overhead [31]; hence, an emulator driven sandbox gets the attention
of security researchers.

Emulation driven analysis tools must provide the ability to hide the emulated
environment from the target App along with the profiling features. In the absence
of such defense mechanisms, an App can evade the dynamic analysis by detecting
the emulated platform [18,25,27,36].

The techniques in [25,27] use API based detection and IP address based
detection to evade dynamic analysis on Google Bouncer, which essentially works
by determining whether the IP address belongs to Google or not.

DroidBench [8], a recent work, provides a set of Apps to detect the un-
derlying virtual environment based on the methods proposed in [18,36]. Fur-
ther, DroidBench also introduces some new methods that utilize the call history
and number of contacts in emulation-detection. Similarly, Caleb Fento [13] and
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Gingo [14] have developed stand-alone Apps to detect Android virtual devices.
Caleb Fento [13] uses the information shown by Vidas et al. [36] as a detection
method to detect Google’s Android emulator. On the other hand, Gingo [14] ex-
tends the same to detect custom virtual devices (like Genemotion, Nox player)
along with Google’s Android emulator.

Other than the stand-alone Apps discussed so far, some android libraries
[7,17,19] have also been developed to detect emulated Android devices which can
be integrated with any App. Libraries [7,17] use similar information as presented
in [14], whereas the library [19] uses the accelerometer data in the detection
mechanism.

Additionally, Diao et al. [12] proposed an approach to evade runtime analysis
by differentiating a user from a bot by analyzing the interaction pattern. This
detection technique is inclined to differentiate user from a bot to bypass runtime
analysis and does not focus on the emulation-detection.

Costamagna et al. [10] have shown the evasion of Android sandbox through
the fingerprinting of usage-profile. This technique works by observing the device
usage information like SMS, call history and others which remain the same when
multiple samples of a malware family execute inside a sandbox. However, the
information received at the server from numerous Apps (malware sample of the
same family) during different executions remains identical. The same information
is fed to the next subsequent malware sample to evade the dynamic analysis.

Existing sandboxes [21,24,34,40] provide some anti-emulation-detection mea-
sures to mitigate the emulation-detection attack. For example, DroidBox [21]
modifies the Android Open Source Project (AOSP) to bypass the emulation-
detection, while some others [24,34] utilize the hooking framework (like Xposed [39])
and provide static but realistic information. Though, they can defend against the
basic emulation-detection in DroidBench but they do not work in the context of
extended emulation-detection.

Some other anti-emulation-detection works have also been proposed that
modify the targeted App before submitting it for analysis [29,37]. Siegfried et
al. [29] use the backward slicing method and remove the emulation-detection
related checks from an App. On the other hand Droid-AntiRM [37] performs
bytecode instrumentation to defeat the emulation-detection. In both approaches,
an App needs modification before submission for dynamic analysis. Thus, the
integrity of an App is lost through such changes.

3 Motivation

To study the effectiveness of the existing dynamic analysis frameworks, we re-
quire a tool with varying levels of the emulation-detection method. In this sec-
tion, first, we give an overview of the flexible emulation-detection library that we
have designed with a collection of emulation-detection methods beyond the basic
detection techniques (see Section 2.2). We use this library to evaluate the ex-
isting frameworks about their anti-emulation-detection measures empirically. At
last, we present the insights learned from this evaluation in designing STDNeut.
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Table 1. Classification of emulation-detection techniques.

Detection Categories Description
Unique device Detection by observing unrealistic device information values
information (basic) (e.g., IMEI value is 00000)
Unique device Detection based on fixed reading of unique device information
information (smart) (e.g., IMEI value is constant)

Sensors reading
Absence of sensor or observing static values from fluctuating sensors
(e.g., fixed reading of Light sensor)

Device State information No change to the device state w.r.t. telephony signal, battery power.
GPS information No change on GPS location data or fake location change
Distributed detection Observing identical unique information for multiple devices in a network.

3.1 Overview of Emulation-detection Library (EmuDetLib)

As a validation mechanism, we have developed a flexible emulation-detection
library (EmuDetLib). The detection techniques in EmuDetLib can be broadly
classified into five categories (refer Table 1): (i) Unique device information (UDI),
(ii) Sensors reading, (iii) Device state information, (iv) GPS information, and
(v) Distributed detection.
Unique device information: This method uses information like IMEI (inter-
national mobile equipment identity) and IMSI (international mobile subscriber
identity), that is unique to a device and employs basic and smart methods to
detect an emulated environment. In basic detection, EmuDetLib observes any
unrealistic data (not in the prescribed format) obtained from the device, whereas
in smart detection, the library also checks whether the information is static or
not by comparing it against known static values of different frameworks.
Sensors reading: Nowadays smartphones have various sensors for different
purposes that can be broadly classified into two categories—motion sensors and
environmental sensors. As the data observed on these sensors fluctuate continu-
ously, this insight can be used to detect the underlying emulated environment. A
recent example of sensor-based detection is the observation of TrendMicro, where
malware (in Play Store) make use of the motion-detection feature to evade the
dynamic analysis [35]. This method detects an emulated environment by utilizing
sensors count and/or by observing fixed sensor values from fluctuating sensors.
Device state information: In reality, a device state gets changed due to some
internal/external event such as change in telephony signal strength, battery
power and incoming SMS/Calls. However, such state changing behavior is miss-
ing in an emulated environment. Our library observes these information to detect
the underlying emulated environment.
Using the GPS location information: GPS is also a sensor and malware
can use similar methods (as explained above) that are used for other sensors to
detect emulated platforms. However, the emulation-detection based on the GPS
is somewhat different from other sensors, as explained below.

Android provides rich APIs to perform various tasks. One such API gives
the power to generate a mock location that can be used by an App to introduce
a fake location when queried. An Android App requires ACCESS MOCK LOCATION

permission to use the mock location API. The other source for geo-location is
BTS ID. Android provides API to query BTS ID, and we can get its geo-location
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by using publicly/commercially available services (https://opencellid.org).
Hence, the geo-location-based emulation-detection technique only works when
one of the following conditions is satisfied: (i) there is no change in the geo-
location of the device, (ii) the mock location API is used to set the geo-location of
the device, or (iii) BTS geo-location is not collaborating with the GPS location.
Distributed emulation-detection: Nowadays, most Apps require communi-
cation with a centralized server to share their status or get new information. To
identify a device uniquely at the server, an App typically generates a unique ID
called an AppID. A smartphone also contains device-related unique IDs namely
IMEI, IMSI, SIM Serial number, and others. These information can also help in
identifying a device uniquely at the server as explained below.

It is trivial to see that a slightly different malware in terms of its signature
can be generated easily by changing its package name, altering the function name
and variable naming convention, or by introducing dummy code while retaining
the overall functionality and the server address. Such malware can communi-
cate the unique device information to a remote server to identify the emulated
environment remotely. In this situation, the emulation-detection can happen at
the server by querying the device information from the connected devices. If a
server detects that multiple devices have identical information (expected to be
unique), it can flag those devices as emulated environment. As this emulation-
detection is carried out in the context of multiple connected devices, we classify
this detection technique as a distributed emulation-detection.

The emulation-detection methods in EmuDetLib discussed above are config-
urable and any App can change its detection mechanism by creating a suitable
configuration file. For more details on EmuDetLib and ethical concern, refer
weblink: https://skmtr1.github.io/EmuDetLib.html.

3.2 Evaluation of Existing Frameworks

To perform empirical evaluation of the existing dynamic analysis frameworks,
we have integrated EmuDetLib into the DroidBench-3.0 [8] benchmark Apps
(referred to as EmuDetLib-Bench). Apart from the EmuDetLib-Bench, we have
collected 1000 malware where the dex date is of the year 2019 from AndroZoo [4]
along with the motion sensor’s malware disclosed by the Trend Micro [35] (re-
ferred to as RealMal) to evaluate the existing frameworks. We have considered
CuckooDroid [34], Droidbox [21], and MobSF [24] along with the vanilla Android
emulator (referred to as emulator) [5] as the candidate analysis systems for the
empirical study, as they are readily available. We exclude the online analysis
systems and other sandboxes in this study. The main reason is that an online
analysis system has a long waiting queue and takes a longer time to schedule
a sample for the evaluation. Hence, these frameworks are not preferred for this
evaluation.

Further, to evaluate GPS information based detection and distributed de-
tection, we need a different environment. For GPS, we require a fake GPS lo-
cation generation app inside an emulated device. For distributed detection, we

https://opencellid.org
https://skmtr1.github.io/EmuDetLib.html
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Table 2. Evaluation of existing framework against detection library EmuDetLib.

Detection Type Sub-type Emulator Droidbox CuckooDroid MobSF
Unique Device Basic X × × ×
Information Smart X X X X

Sensors
Count × × × X

Reading X X X X
Device State – X X X X

GPS

Cond (i) (Normal) X X X X
Cond (i) (Fake) × × × ×
Cond (i) & (ii) X X X X
Cond (i) & (iii) X X X X

Distributed No Emulation × × × ×
(Server config) W/- Emulation X X X X
Note: X represents successful detection of underlying emulation environment, whereas × represents failure in de-
tecting emulation environment. We use this notation in the rest of the tables. In GPS based detection, “Fake”
represents a sandbox executing fake GPS location generating App/service. Normal represents without fake loca-
tion App/service, and rest of the condition is evaluated with both the setting i.e. fake and without fake app.
In distributed emulation, no Emulation represent the server without emulation-detection algorithm whereas W/-
Emulation represent server deployed with emulation-detection algorithm.

need a server where the emulation-detection method is deployed and requires
multiple instances of the same sandbox running at the same time. We utilize
the command and control server of the real malware Dendroid [28] by em-
ploying the emulation-detection algorithm (see Algorithm 2 at weblink: https:
//skmtr1.github.io/EmuDetLib.html#al2).

Table 2 shows the evaluation result of the emulation-detection of candidate
sandbox against all the detection methods shown in Table 1. In Table 2, the
sub-type represents the subcategory/configuration of the evaluation. As shown
in Table 2, in distributed detection, when the server is configured with the
emulation-detection method, none of the frameworks can hide their emulated
environment. Similarly, in GPS-based detection, only with a fake app installed
emulated-platform can bypass the detection mechanism in condition 1 (refer
to GPS information based detection). In other cases of GPS, the sandbox is
flagged as an emulated platform by the detection library. There is one other
case in the sensors category with count where MobSF is the only sandbox that
cannot bypass the detection mechanism. The reason being, it is designed on top
of VirtualBox and does not support sensors. In contrast, all other sandboxes use
an Android emulator, which comprises of 7-8 sensors inbuilt and bypasses the
emulation-detection based on sensor count.

Similarly, on executing samples of RealMal (see Table 2 at weblink: https:
//skmtr1.github.io/EmuDetLib.html#tl2 for classification and evaluation),
Android SDK emulator cannot hide its emulated environment against malware
samples with emulation-detection capability. Simultaneously, other sandboxes
get detected by the malware samples under the category of device state and
sensors. To reason about such behavior, we have investigated BatterySaverMobi
malware from RealMal samples (see Listing 1 at weblink: https://skmtr1.

github.io/EmuDetLib.html#cs1 for code snippet), which uses accelerometer
(line 5) reading to observe motion on a device. If any motion takes place, then
it executes the malicious code (line 15). Hence, Such malware can bypass the
dynamic analysis job performed on existing sandboxes.

https://skmtr1.github.io/EmuDetLib.html#al2
https://skmtr1.github.io/EmuDetLib.html#al2
https://skmtr1.github.io/EmuDetLib.html#tl2
https://skmtr1.github.io/EmuDetLib.html#tl2
https://skmtr1.github.io/EmuDetLib.html#cs1
https://skmtr1.github.io/EmuDetLib.html#cs1
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3.3 Summary of Emulation-detection

Some key observations regarding the effectiveness of anti-emulation-detection
measures of the existing analysis platforms against EmuDetLib are shown below.
i) Existing analysis frameworks are able to bypass the basic emulation-detection
techniques based on unique device information. However, they fail to defend
when the emulation detection attacks are performed by analyzing the underlying
defense mechanism. The main reason being either the data is unrealistic (basic
detection) or the data is realistic but static (smart attack).
ii) Each framework fails to defend against the emulation-detection attacks based
on fluctuating sensors and GPS data since the data does not represent the real-
istic behavior of a device.
iii) Similar to the detection methods based on UDI, existing frameworks are also
not able to defend against distributed emulation-detection. The observation of
similar data for unique device-related information across multiple devices helps
in raising the red-flag regarding the underlying emulated environment.
iv) Detection methods based on the device state (e.g. Telephony, Battery Power)
also successfully detect the underlying emulated environment due to the absence
of defense mechanisms in the analysis frameworks.

In short, the extended emulation-detection techniques show that the exist-
ing publicly accessible dynamic analysis frameworks do not provide foolproof
anti-emulation-detection measures. Therefore, there is a need for a robust anti-
emulation-detection approach that can hide the underlying platform from smart
emulation-detection measures. Note that the emulation-detection techniques can
also utilize the timing channel to detect the emulated platform (like timing mea-
sures against the graphics subsystem). Such heuristics require a sufficient number
of events to understand the underlying execution environment, which tends to
increase their code footprints and flag such an App as abnormal. Due to this limi-
tation, we do not discuss any timing channel based emulation-detection methods.
In the next section, we discuss the design and implementation of STDNeut which
incorporates a robust anti-emulation-detection system.

4 STDNeut: Design & Implementation

In this section, first we discuss the process of generating realistic sensor’s data
and the challenges associated with it. After that we provide an overview of STD-
Neut, a detailed anti-emulation-detection system and elaborate on the design of
its various components. STDNeut aims to neutralize emulation-detection using
different sensors, telephony system, and device state data.

4.1 Realistic Sensor Data Generation

A smartphone contains multiple sensors (e.g., accelerometer, GPS, and others)
or interacts with an external entity like BTS. A malware can use these sensors to
detect an emulated environment. To nullify the effect of sensors based emulation-
detection, we have identified three main challenges as follows:
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Fig. 1. An example of
sensor’s dependency graph.
Sensor S11 in shaded box
represents a new sensor
introduced in the system.

S2 S10

S4 S5 S6 S7

S8S9

S1 S3

S11

(i) Existing sensors value should fluctuate with respect to time.

(ii) Detection of emulation environment through sensor correlation.

(iii) Model should be flexible to incorporate new sensors and sensor relations.

To better understand these challenges, let us take a directed graph shown in
Figure 1 that represents eleven sensors (S1 to S11), and influence of one sensor
on others in terms of driving the sensor’s values. An arrow from sensor Si to
sensor Sj denotes that the value of sensor Sj depends on the value of sensor Si.
If we see an update in the value of sensor Si, then sensor Sj ’s value should also
be seeking an update according to Si’s value. As shown in Figure 1, some sensors
do not depend on other sensors (sensor with zero in degree); we name them as
independent sensors, whereas sensors with in degree ≥ 1 are called dependent
sensors because the value of these sensors depends on the value of others.

Challenge (i) is easy to understand, which states that the value of the sensor
should fluctuate concerning time. For example, let us consider sensor S10 (as-
suming as a light sensor) in Figure 1, the value of this sensor should be updated
according to the operating environment lighting condition. Similarly, other sen-
sor’s value should also be updated w.r.t. time or working environment condition.

To understand challenge (ii), consider two sensors S4 (assuming as GPS) and
S5 (assuming as BTS). As shown in Figure 1, sensor S5’s value depends on the
value of sensor S4. This dependency is based on the distance between the values
of S4 and S5, which cannot be more than x meters. This x may vary depending
on the area density (population and obstacles) of the BTS. Further, to be more
clear about challenge (ii), let us include two more sensors S1 (as time) and S2

(as an accelerometer). The value of sensor S4 depends on both the sensors, i.e.,
S1 and S2. If we consider time and GPS, then there is a correlation between the
current GPS location and the previous location w.r.t. time elapsed. For example,
if the current GPS location is Washington DC, a person cannot reach New York
in five minutes. Similarly, when considering accelerometer and GPS, then the
measurement of the distance travelled through accelerometer should match with
the distance between two consecutive GPS locations. Hence, a sensor-based anti-
emulation-detection system should be compliance to all these scenarios so that
the use of sensor’s value in an innovative way (as described above) cannot reveal
the identity of the underlying system.

Challenge (iii) is related to the introduction of a new sensor into the system.
If a new sensor is included in the system, either it is an independent or depen-
dent sensor (sensor S11 as shown in Figure 1), the system should be flexible to
reprogram so that new sensors can also be adopted for providing anti-emulation-
detection capability.
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Algorithm 1: Generate Handle for Sensors
Input : sensorsobj , dependSensobj // List of sensors and dependencies objects
Output: sensorshndl // Ordered list of handles to generate realistic sensors values

1 sensorshndl ← φ
2 Unprocessedchld ← φ // Sensors queue whose child is not processed
3 Processedchld ← φ // List of sensors whose child is already processed
4 Dependecygraph ← generate graph(dependencyobj , sensorsobj)
5 Independentsensors ← getZeroInDegreeNodes(Dependecygraph)
6 foreach S in Independentsensors do
7 Shndl ← defaulthndl(sensorsobj , S)
8 append(sensorshndl, (S, Shndl))
9 append(Unprocessedchld, S)

10 while ¬(empty(Unprocessedchld)) do
11 S ← dequeue(Unprocessedchld)
12 childs← getChilds(Dependecygraph, S)
13 foreach C in childs do
14 depfunc ← getDepfunc(dependencyobj , (S,C))
15 Chndl ← generatehndl(sensorsobj , C, depfunc)
16 if C not in sensorshndl then
17 append(sensorshndl, (C, Chndl))
18 else if C is in Processedchld then// Handling cyclic dependency

19 depfunc ← getDepfunc(dependencyobj , (S̄, C))
20 Chndl ← generatehndl(sensorsobj , C, depfunc)
21 updatehndl(sensorshndl, (C, Chndl))

22 else
23 updatehndl(sensorshndl, (C, Chndl))
24 if C not in Unprocessedchld and C not in Processedchld then
25 append(Unprocessedchld, C)

26 append(Processedchld, S)

27 return sensorshndl

To emulate realistic values for sensors, one should consider all the scenarios,
as discussed above. Hence, a fine-grained method is needed to emulate sensors
reading while maintaining the dependencies between them along with the re-
programmable capability to adopt new sensors in the system.

To address all the challenges as mentioned above, we present Algorithm 1,
which takes two lists. One list holds the available sensor object (sensorsobj)
and the other is related to the dependency between sensors (dependSensobj). A
sensor’s object comprises of sensor’s identity (like accelerometer, GPS), a default
handle and the initial value. The default handle is useful when a sensor does not
depend on others (independent sensors), and the initial value is used to initialize
the sensor. On the other hand, a dependency object comprises the identity of
two sensors Si and Sj , and a dependency function Fij , which represents the
dependency between Si and Sj . These two lists have to be provided by a user, and
Algorithm 1 generates an ordered list of sensors handle (sensorshndl), which can
be executed at the analysis time to emulate the sensor’s value while preserving
the relationship between them.

In Algorithm 1, Unprocessedchld denotes a queue of sensors whose immediate
child needs processing w.r.t. its handle to emulating the sensor value, whereas
Processedchld holds the list of sensors whose child has already been processed.
Apart from storing processed sensors, the algorithm utilizes this list to break any
cyclic dependency (see dependency among sensors S6 to S9 in Figure 1), which is
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a rare case for sensors. As shown in line 4, the algorithm generates a dependency
graph among sensors by using the list of dependSensobj and sensorsobj . Line
5 gets the list of independent sensors from the dependency graph from where
actual learning of sensor handle starts. From lines 6 to 9, the algorithm obtains a
handle for each independent sensor, which is equivalent to the default handle in
sensor object. The default handle is used to generate the value for a sensor, which
does not depend on other sensors. Apart from the sensor handle, independent
sensors are then appended in the Unprocessedchld queue, because the children
of these sensors may require a handle.

From lines 10 to 26, the algorithm generates the handles for the dependent
sensors. The algorithm terminates when the Unprocessedchld queue does not
contain any sensor for processing. Line 14 gets the dependency function between
parent sensor S and the child sensor C by using the dependSensobj and a handle
gets generated at line 15. At line 16, it checks if the sensor is not in the list of
sensorshndl, algorithm directly adds this handle into sensorshndl. In other cases,
it updates the already learned handle based on the current dependency and the
dependency learned earlier. For updating an already learned handle, there can
be two possibilities, one is related to cycle (see cyclic dependency in Figure 1
among sensors S6 to S9) and the other is when a sensor depends on more than
one sensor (See sensor S4 in Figure 1). A cyclic dependency is resolved at line 18
in Algorithm 1, where a new dependency function is calculated between parent
S and child C. To obtain the new dependency function, we utilize the last value
of S (referred to as S̄ in line 19) to update the handle of C. At last, when all the
children of a sensor S are processed, S is added to the Processedchld at line 26.
Finally, the algorithm returns an ordered list of sensorshndl, which is then used
to emulate the sensor’s value at run-time. This algorithm handles the challenge
(i) and (ii). For challenge (iii), if the user updates the list of sensor objects and
dependency objects, then it re-generates the sensor handles for all the sensors,
including the new sensors.

4.2 STDNeut Overview

STDNeut system provides robust support for anti-emulation-detection that can
be used to design an efficient framework for malware analysis. Figure 2 shows
the architecture of STDNeut along with the design of its controller. As shown
in Figure 2(a), there are two main subsystems of the STDNeut: (i) Extended
Android Emulator and (ii) STDNeut Controller (see Figure 2(b)).

Extended Android emulator: It is responsible for spoofing the information
related to sensors, telephony systems, and device data. The STDNeut controller
and config.ini file govern this spoofing information to the Android emulator.
Most of the device-specific information, like IMEI, remains constant during the
execution time, while the values for sensors and telephony signal fluctuate over
time. During the boot time, the Android emulator reads config.ini file and
configures a virtual device with device-specific information that is unique to it,
while the STDNeut controller handles the fluctuating values at run-time.
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(b) Design of STDNeut controller.

Fig. 2. Architecture of STDNeut, an anti-emulation detection system along with the
STDNeut controller.

STDNeut controller: It is responsible for launching an App inside the emula-
tor and feeding essential information for anti-emulation-detection. For example,
the controller generates a config.ini file that is being used by the Android
emulator to configure a virtual device with unique values. The controller also
manages the hardware/environment generated events that alter the state of an
Android device such as available sensors, telephony signal, and many more. This
is achieved by frequently feeding-in realistic sensor data while maintaining the
correlation with other sensors (as described in Section 4.1 by utilizing Algorithm
1) and other hardware related events into the emulator. To feed the sensor data
and hardware-related events, the controller uses the emulator console APIs [6].
Other than the core features mentioned above, the controller also enables and
configures other functionalities which simulate incoming calls/SMSes, manipu-
lates signal strength, and many more. We discuss the extension made to Android
emulator in the next section.

4.3 Extensions to the Android Emulator

A smartphone contains multiple sources of information that are either unique to
a device and does not change during its life or information may get changed over
time due to the operating environment that alters its state. Mostly, a device gets
a unique identity from the telephony system that includes IMEI, IMSI, phone
number, and many more. To interact with the telephony system, we use AT
commands [1]. To provide a unique identity to a virtual device, we intercept
the AT command request at the emulator layer for spoofing the response. For
example, a smartphone makes “AT+CGSN” and “AT+CIMI” commands to
query IMEI and IMSI numbers, respectively. This spoofed information is fed to
the AT command by concerning the config.ini file. Similarly, in response to AT
command, other values are also fed that remain constant but unique to a device.
Apart from the config.ini file, these values can also be supplied to a virtual
device using command line arguments. We use the emulator console to supply
realistic data periodically for the hardware/environment events that alter the
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Algorithm 2: Path patching for GPS trajectory
Input : Latsrc, Longsrc, Latdst, Longdst, nSteps
Output: trajectory

1 trajectory ← φ
2 LatStepmax ← |Latsrc − Latdst| / nSteps× 2
3 LongStepmax ← |Longsrc − Longdst| / nSteps× 2
4 Directlat ← +1 if Latdst > Latsrc else −1 // direction
5 Directlong ← +1if Longdst > Longsrc else −1
6 (lat, long)← (Latsrc, Longsrc)
7 append(trajectory, (lat, long))
8 foreach i in range(0, nSteps) do
9 lat← lat+ rnd.uniform(0, LatStepmax)×Directlat

10 long ← long + rnd.uniform(0, LongStepmax)×Directlong

11 append(trajectory, (lat, long))

12 return trajectory

device state. The Android emulator provides most of the hardware like sensors,
GPS, signal strength, and others; the data for them can be fed using emulator
console. Android emulator does not provide any interface to change the BTS
information with whom a device is currently associated. To provide a realistic
GPS location, the information about the BTS associated with the device should
collaborate. With this observation, we have added the BTS interface through
the emulator console, and the STDNeut controller is supplying the realistic BTS
identity.

4.4 STDNeut Controller

The primary responsibility of STDNeut controller is to generate config.ini file
and feed-in the realistic values for the fluctuating sensors and other hardware
events. As shown in Figure 2(b), the STDNeut contains four core components:
(i) config.ini generator, (ii) sensors manager, (iii) GPS manager, and (iv) GPS
to BTS.
config.ini generator: It generates the config.ini file to spoof device-specific
unique information.
Sensor manager: It manages the device sensors by feeding-in realistic data
periodically. To generate the value of sensors, it uses the same handles which are
obtained through the Algorithm 1. The sensor manager manages all the sensors
and other hardware events except the GPS. However, it gathers the next GPS
coordinate to be projected by GPS manager so that the sensors on which GPS
depends, can generate appropriate values.
GPS manager: The main reason behind the separate manager for the GPS is
the correlation between the current GPS location and the previous location. For
example, if the current GPS location is Washington DC, it is impossible for a
person to reach New York in five minutes. Hence, a random GPS location alerts
an App about the emulated environment. Therefore, a precise method is required
to feed GPS location to an emulated environment, and GPS manager provides
the same. The GPS manager reads the source and destination geo-location and
the travel time from the STDNeut configuration file and generates a route by
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using a path patching algorithm, as shown in Algorithm 2. This algorithm takes
source and destination geo-locations along with the number of steps required to
move from source to destination, and returns the route trajectory.
GPS to BTS: A realistic GPS location alone is not strong enough to hide an
emulated environment. It must be assisted by the BTS location that correlates
with the current GPS location. This correlation is based on the maximum dis-
tance between the BTS and GPS locations, which may vary from 1 kms to 3 kms
depending on the area’s population and obstacles. There are several commercial
and public services that provide the GPS location by using a BTS ID. Still,
no one provides the reverse mapping of it, i.e., providing a BTS ID based on
GPS location and the SIM operator that is closer to the current GPS location.
GPS to BTS module bridges this gap with the help of the OpenCellID database.
The OpenCellID database contains information for the already installed BTS,
worldwide, which is publicly available for research purposes. As this database
stores BTS information worldwide, an efficient search mechanism is required to
retrieve BTS ID based on the current GPS location and SIM operator. With
this observation, we first filter the database based on the MCC, followed by the
MNC. MCC and MNC reduce the search space to a specific operator within a
country. Now we only need location area code and cell-ID to get the desired BTS
ID, which is retrieved by calculating the distance with stored BTS location in
the database and current GPS location, and compared against the maximum
distance allowed. We have used haversine formula to measure the distance be-
tween the BTS location and current GPS location. The main reason for separate
module for GPS to BTS correlation is because it requires to interact with an
external database for retrieving the BTS ID according to the GPS location.

5 Validation of STDNeut

We use the Android Open Source Project (AOSP-7.1) to validate the proposed
anti-emulation-detection system. For the experiments, Android Virtual Device
(AVD) instances were configured with two CPU cores, 1.5 GB of RAM, 2 GB of
internal storage and a 512 MB of SD card along with all the sensors.
STDNeut vs. EmuDetLib: We evaluated the effectiveness of the STDNeut
against EmuDetLib-Bench and RealMal samples (see Section 3.2). In evaluation,
we found that STDNeut remains undetected against all the attacks performed by
EmuDetLib-Bench and RealMal samples except the sample under category File
info/SysProp and Mix of RealMal. The reason being the use of Qemu specific
files and system properties that cannot be spoofed through the emulation layer.
Hence, to bypass these detection methods, we have used the Xposed Frame-
work. After evaluating the efficacy of the STDNeut, we attempt to understand
this strong defense mechanism’s reasoning by performing various experiments. In
the remaining part of this section, we discuss the reasons for the efficacy of STD-
Neut by analyzing different sensor readings and device information during the
experiments. We also demonstrate a scenario for understanding the effectiveness
of the STDNeut against distributed emulation-detection.
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Fig. 3. Effectiveness of STDNeut in neutralizing emulation detection using sensors by
providing random reading for accelerometer and magnetometer.
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realistic data along with associated BTS.
GPS denotes path trajectory generated us-
ing the path patching algorithm.

5.1 Non-detectability through Sensors

To evaluate the efficacy of STDNeut against potential malware exploiting sensor
readings, we have developed an App to record and store the values of accelerom-
eter, magnetometer, and GPS readings periodically which are shown in Figure 3
and Figure 4. In this evaluation, we have set two dependencies for sensors, one
for time & GPS, and another for GPS & BTS. We make rest of the sensors as in-
dependent. The accelerometer reading represents the movement of the device in
a three-dimensional space (referred to as AccelX, AccelY, and AccelZ) where the
value in each dimension ranges from zero to ninety (0, 90). Figure 3(a) shows the
distribution of accelerometer readings where the X-axis represents ranges (total
of nine ranges) of sensor values and the Y-axis represents the frequency. We
have collected the values by executing an experiment for 150 seconds and read-
ing the sensor values every second. The data shows that all the sensor readings
are almost equally likely and approximates a random distribution. Therefore,
any emulation-detection technique based on accelerometer reading is nullified
by our system. For the magnetometer (Figure 3(b)), the magnetic field readings
on each axis in a three-dimensional system are represented as magX, magY and
magZ with a range between −45 to +45. As shown in the Figure 3(b), the dis-
tribution is random, thus it does not allow an emulation-detection scheme using
magnetometer data to succeed in detecting the underlying emulation platform.

Another source of emulation-detection is performed by reading GPS data.
Unlike accelerometer and magnetometer, GPS data cannot be a random value.
Depending on the location of the system, the GPS data should be provided with
very slight variations in latitude and longitude. As shown in Figure 4, STDNeut
anti-emulation-detection measure can provide valid latitude and longitude values
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Table 3. Unique device information provided by STDNeut to three different AVDs
executing simultaneously.

Queried Information retrieved
Information AVD1 AVD2 AVD3
PhoneNumber 9876543210 9856543410 9876573213
IMSI 405541385237906 405521385237806 405511385238906
IMEI 359470010002931 359470010302943 359470010002949

along with the associated BTS. In Figure 4, GPS denotes the path trajectory
generated using path patching algorithm 2 whereas Vodafone cell and Airtel cell
denotes the BTS location in the network of Vodafone and Airtel, respectively.

5.2 Non-detectability through Device Information

Device information is useful in differentiating between an emulated device and a
real smartphone. In emulator platforms, device information such as IMEI, IMSI,
phone number etc. are either absent or static values are present. To demonstrate
the effectiveness of STDNeut’s anti-emulation-detection measures, we have used
an App called SIMCardInfo [15], which extracts the information related to tele-
phony services. We created three instances of this App in three different AVDs
and executed all the instances simultaneously for one minute with and without
STDNeut. The output of the App queries related to the device information is
logged for all instances. We analyzed the log to extract information like IMEI
and IMSI. Table 3 shows the captured device information with STDNeut. We are
not showing the results other than the proposed system as the device readings
were the same for all the instances. As shown in Table 3, STDNeut is capable of
providing a unique device identity in a multi-instance setup. This is particularly
useful to avoid detection when analyzing potential malware running in separate
devices designed to operate in a collaborative manner as all malware see the
same device identity. However, the values of PhoneNumber, IMEI, and IMSI
are generated manually in the experiment which can be configured through the
STDNeut’s configuration file without any modification in the Qemu.

5.3 Evading Distributed Emulation-detection

To show the effectiveness of the STDNeut against emulation-detection using
multiple clients along with a central server, we used Dendroid [28], a real An-
droid botnet. We integrated EmuDetLib into the Dendroid malware. We mod-
ified the Dendroid control server [28] not to send further instructions to the
clients that seem to be running on emulated platforms by observing identical
device information like IMEI from multiple clients (see Algorithm 2 at https:

//skmtr1.github.io/EmuDetLib.html#al2). Apart from hosting the control
server, we also designed a victim site where the malware-infected devices per-
form a denial of service attack in a distributed manner when instructed from the
control server. We created two instances for each of the CuckooDroid and STD-
Neut, and then executed Dendroid malware with integrated emulation-detection

https://skmtr1.github.io/EmuDetLib.html#al2
https://skmtr1.github.io/EmuDetLib.html#al2
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library. The control server instructs the infected devices to perform an HTTP
flood on the victim site mentioned above only if the control server does not de-
tect emulation. In our evaluation, we found that the control server is sending
instructions only to the STDNeut system instances and not to the CuckooDroid
instances. This was primarily because, the phone number, IMEI, etc. provided
to the control server by the CuckooDroid were identical for both the instances,
which was not the case with STDNeut. Therefore, we can conclude that the
proposed STDNeut system can prevent emulation-detection orchestrated in a
distributed setup.

5.4 Discussion and Limitations

Even though STDNeut provides a strong defense against all the malware sam-
ples, it falls short in the presence of malware that uses Qemu specific file and
system properties for emulation-detection. To overcome this limitation, we have
utilized the Xposed framework. The Xposed framework itself is susceptible of de-
tection from App. For example, the Snapchat App uses the native code to detect
Xposed [2]. It is possible because Xposed capability is limited to the framework
level API only, and here detection is performed through the native code. A more
suitable defense is to use kernel-level modification that remains undetected even
when the attack is performed from any layer above the kernel. However, our
malware set does not contain any samples that detect the existence of Xposed.

Additionally, the first eight digits of IMEI are called TAC (Type Allocation
code), which indicate the device type. Malware can also use TAC to detect an
emulated environment by observing TAC’s mismatch with the Android device
name. To our knowledge, we have not observed the existence of such malware.
However, STDNeut is a generic solution that requires analyst intervention to
configure it with appropriate information like selecting device type and corre-
sponding TAC value in IMEI and other such information.

Furthermore, some Android devices like tablets may lack cellular capabilities
or do not have some sensors like GPS. In STDNeut, cellular, GPS, and other
sensors fall under the sensor category. An analyst may configure STDNeut with-
out these sensors information to create a realistic emulated device where such
sensors are not present.
Evaluation summary: In a nutshell, the proposed STDNeut can effectively
execute a malware without being detected as an emulated environment.

6 Conclusion

This paper proposed a flexible and configurable emulation-detection library
(EmuDetLib) that provides extensive emulation-detection methods. We have
used EmuDetLib to show that anti-emulation-detection measures of the existing
dynamic analysis frameworks are not sufficient. Moreover, beyond basic defense
against emulation-detection, all the analysis frameworks fail to hide the un-
derlying emulation layer. To design a robust analysis framework on emulated
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platforms, we proposed STDNeut, a configurable anti-emulation-detection sys-
tem. STDNeut hides the emulated platform effectively by handling the data
from sensors, telephony system, and device attributes in a realistic manner. We
performed experiments to demonstrate the effectiveness of STDNeut against the
primary and extended detection methods. We believe STDNeut provides efficient
and secure anti-emulation-detection measures that are difficult to be bypassed
even by sophisticated malware.
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