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Abstract—With the increased popularity and wide adoption of
Android as a mobile OS platform, it has been a major target
for malware authors. Due to unprecedented rapid growth in the
number, variants, and diversity of malware, detecting malware
on the Android platform has become challenging. Beyond the
detection of a malware, classifying the family the malware
belongs to, helps security analysts to reuse malware removal
techniques that is known to work for that family of malware. It
takes manual analysis if a malware belongs to an unknown family.
Therefore, classifying malware into exact family is important.
This paper presents a technique and tool named MAPFam that
applies machine learning on static features from the Manifest
file and API packages to classify an Android malware into its
family. This work is premised on a starting hypothesis that
features extracted from API packages rather than on API calls
lead to more precise classification. Our experiments indeed
shows that API package based models provides ∼1.63X more
accurate classification compared to an API call based method.
Our machine learning based malware family classification system
uses API packages, requested permissions, and other features
from the Manifest files. The proposed family classification system
achieves accuracy and average precision above 97% for the top
60 malware families by using only 81 features with 97.55% of
model reliability rate (Kappa score). The experimental results
also shows that MAPFam can perfectly identity 36 malware
families.

Index Terms—Android, static analysis, malware family, secu-
rity, machine learning

I. INTRODUCTION

Android dominates the smartphone market as a choice of
an operating system on mobiles. Among the various reasons
for its dominance, its open-source nature and the extensive
support of application (App), cheaper price point are major
reasons. Recently, a report shared by the IDC Corporate USA
for smartphone OSes shows that in the 2nd quarter of year
2021, the share of Android was 83.8% and predicts that it will
acquire 84.9% of market share by 2025 [1]. As a consequence
of such large-scale adoption of Android, it has drawn the
attention of Android malware authors for various cyber crimes
– including account takeover, key logger or other persistent
threat implantation, crypto jacking, privacy invasion etc.

A study published by the AV-TEST shows that around 3.12
million new Android malware were counted in the year 2020
which indicates that more than 8.5K new Android malware
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were developed each day during the year [2]. Many of these
malware are slight variations of others, and belong to the same
family of malware. With the rapid growth in the number, vari-
ants, and diversity of malware, it is challenging to manually
analyse the malware to obtain signatures and prepare defense
tactics (e.g., employ antivirus techniques) against the new
malware. Automated classification of malware into different
families can address the scale and dynamic nature of malware
growth.

The process of auto-classification of malware into families
can expedite the process of flagging the malware and keep
the anti-virus defense mechanisms up to date by obtaining
applicable signatures. On the other hand, if a malware can not
be reliably mapped to a family, human expertise is warranted
which may lead to creation of a new malware family. Existing
mapping techniques use several application features to accu-
rately classify malware into different families. In this paper, we
analyze the efficacy of mapping techniques based on different
App features—API calls, permissions and API packages (see
Section IV-A). Moreover, we propose MAPFam, a malware
family classification solution using combination of application
features for better accuracy of malware to family mapping.

In the past, many [3]–[16] machine learning based Android
malware detection systems have been developed. There are
few [3], [5], [8], [10], [12], [15], [17]–[20] that classifies an
Android malware into malware families. Mostly, the machine
learning based Android malware detection tools utilize either
static features ( [3], [4], [7], [12], [19]) or dynamic features
( [7]–[9]). Some machine learning based malware analysis
tool (like EC2 [17]) use both types of features i.e., static
and dynamic. Generally, dynamic features are obtained by
executing a malware sample on an emulated device. An
emulator based dynamic analysis platform generally fails to
capture malicious behavior if the malware is designed to detect
emulators [21]. Hence, our study mainly focuses on static
analysis based malware detectors, specifically in the domain
of malware family classification.

Most static malware analysis tool [3], [10], [19] extracts
features from either manifest file, Dex code or both. In the
past, requested permissions from the manifest file and API call
information from the Dex code are widely used for Android
malware detection and family classification. Requested per-
missions provide an overview of the capabilities that an App
has whereas, API call information is used to capture actual
malicious behavior.978-1-7281-9266-6/21/$31.00 ©2021 IEEE



In this work, we start with a hypothesis we formulated
based on our experience with Android malware detection. We
experimentally test the hypothesis and based on the evidences
obtained – we established that the hypothesis holds. This leads
to creation of a tool MAPFam – for mapping malware into
their families.
The Hypothesis: The performance of API call information-
based malware detectors or family classification models may
be negatively impacted due to code obfuscation (use of java
reflection) or obsolete API. Also, the use of API call in-
formation unnecessarily increases the size of the feature set
while not contributing significantly towards malware family
classification (see Section IV-A). Alternative to the API call
information, system API packages can be used for malware de-
tection and classification. An API package is a representative
for a group of API calls. Whenever an API gets invoked, the
corresponding API package is always referred. Furthermore, a
system API package is free from the obfuscation attack, as its
implementation details is not present in an APK. Therefore,
using API package information in place of API calls will
reduce the size of features and provides a better classification
accuracy.
Testing the Hypothesis: In this paper, first we comparatively
analyze the effectiveness of features like API package usage,
API call information and requested permissions in classifying
malware to their respective families (section IV-A). Subse-
quently, we design MAPFam, an Android malware family
classification system that uses features from the Manifest file
and API packages used to identify the malware family. In
MAPFam, we first extract static features from the Android
Manifest file and Dex code (API Packages), and encode them
to use with machine learning algorithm. The extracted features
are then passed to a feature selection module to reduce the
feature set size to obtain optimal features that are most relevant
to malware family identification. We evaluate MAPFam using
AMD dataset [22] to show that MAPFam provides increased
accuracy compared to techniques using only API calls (for
restricted APIs) or requested permissions.

Overall, our contributions are as follows:
• We design MAPFam, an Android malware family classi-

fication model that uses static features from the manifest
file and API packages (Section III). To design a family
classification model, we develop a feature extraction and
encoding module to extract features from an Android
App (Section III-B). The API package information has
not been evaluated/used heretofore, for android malware
family classification, to the best of our knowledge.

• First, we show the effectiveness of the API package
feature set against the requested permissions and API
calls. API package feature set is ∼1.63X and ∼1.04X
accurate compared to models that only use either APIs or
requested permissions. We compute the model reliability
of API-packages and it comes out to 95.83% (Section
IV-A).

• Finally, we evaluate MAPFam against the known malware
families with multiple classifier algorithms. MAPFam

TABLE I
DISTRIBUTION OF MALWARE FAMILY IN THE DATASET.

ID Family #Samples ID Family #Samples
0 airpush 7843 30 andup 44
1 dowgin 3384 31 boxer 44
2 fakeinst 2172 32 ksapp 36
3 mecor 1820 33 gorpo 32
4 youmi 1300 34 stealer 25
5 fusob 1270 35 updtkiller 24
6 kuguo 1199 36 zitmo 24
7 jisut 558 37 vidro 23
8 droidkungfu 546 38 aples 21
9 bankbot 460 39 fakedoc 21
10 rumms 402 40 fakeplayer 21
11 lotoor 329 41 ztorg 20
12 mseg 235 42 winge 19
13 boqx 215 43 penetho 18
14 minimob 203 44 cova 17
15 triada 197 45 mobiletx 17
16 kyview 175 46 fjcon 16
17 slembunk 174 47 kemoge 15
18 simplelocker 172 48 spambot 15
19 smskey 165 49 mmarketpay 14
20 gumen 145 50 svpeng 13
21 gingermaster 128 51 vmvol 13
22 leech 109 52 faketimer 12
23 nandrobox 76 53 steek 12
24 bankun 70 54 utchi 12
25 koler 69 55 fakeangry 10
26 mtk 67 56 opfake 10
27 golddream 53 57 spybubble 10
28 androrat 46 58 univert 10
29 erop 46 59 finspy 9

model can classify malware families with an accuracy
above 97% and 97.55% of model reliability rate (Section
IV-B). We also evaluate the effectiveness of MAPFam
for the identification of individual malware families.
The evaluation results show that MAPFam can perfectly
identify 36 malware families out of 60 with an average
precision rate of more than 97% (Section IV-C).

II. ANDROID MALWARE DATASET (AMD)

We have used the real-world malware samples from AMD
[22]. AMD is the largest public dataset that contains 24,553
unique labelled malware distributed among 70 different fam-
ilies. Malware samples in the dataset were collected between
the year 2012 to 2016. Note that, the recent labelled malware
is not publicly available. In the AMD dataset, the airpush
malware family size is the largest with 7843 unique malware
whereas, the smallest size of the family contains only one
sample (roop malware family). A sufficient amount of rep-
resentative samples are needed to train and test a model for a
machine learning algorithm. However, in AMD dataset, some
malware family does not have enough samples. To overcome
this issue, we utilize the top 60 malware families of the
AMD dataset (see Table I), which accounts for 24,205 unique
malware samples and have at least 9 or 10 unique malware.

III. DESIGN

This section presents an overview of MAPFam: a Manifest
file and API Package based Android malware Family classi-
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Fig. 1. Architecture of learning malware family classification model.

fication model, and elaborates the working of its core compo-
nents.

A. An Overview

The main aim of this work is to develop a system that
can label Android malware into its respective families without
human expertise. Figure 1 shows the process of learning the
Android malware family classification model. As shown in
Figure 1, there are three main components of the proposed
work — (i) feature extraction & encoding, (ii) feature se-
lection, and (iii) learning model. In the feature extraction &
encoding module, static features are extracted from an Android
App. The extracted features are then encoded to get feature
vectors that are given to the feature selection module. The
feature selection module selects the best features that directly
contributes to the family classification work. Eventually, the
Learning Model module trains the final classification model
on the reduced feature set as selected by the feature selection
module. We describe details of each of these component in
the following subsection.

B. Feature Extraction and Encoding

This module is the heart of family classification model. We
extract features from two locations, i.e., (i) Android manifest
file [23] and (ii) Dex code similar to Drebin [3]. However,
the features extracted for this work are slightly different from
Drebin [3]. In Drebin, all the features are of binary type where
the value of a feature is set to one if it is present in an App
otherwise zero. Whereas, in our work we use two type of
features—(i) Numeric and (ii) Binary (see Table II).

Furthermore, Drebin extracts used permissions, URLs, re-
stricted APIs and sensitive APIs from the Dex code of an
App, whereas we only extract the information about the API
packages used by an App. The main reason of using package
information is—
(i) Generally, a package contains multiple classes of the
same type. Similarly, a class is a group of methods (APIs)
and related data. Therefore, package information reduces the
number of features for a malware family classification model
compared to the APIs based mechanism. For example, In
Android API level 30, there are 4833 unique system-defined
classes. At the same time, the count of system-defined unique
packages is 226, which is 21.38X lesser than classes. Suppose
a class contains an average of 4 methods (generally it is more
than 4). Then there are in total of 19332 unique APIs available
as features, which is ∼85.54X larger than system package
based features.

Therefore, we extract API package information from the
Dex code. Features extracted from the manifest file are—

Activities
Services
Broadcast Receivers (receivers)
Content Providers (providers)
Intent Filters (intents)
Requested Permissions

The above mentioned features from manifest file and Dex
code have been extracted using the Androguard [24] and
represented as strings.

1) Feature Encoding: The primary task of this sub-module
is to encode the extracted features and generate the feature
vector that can be passed to machine learning classifier for
training and testing. To generate feature vector we opt follow-
ing strategy:

• Initially, all the features in each category of feature sets
are of binary type (features are represented as strings).
Taking all the features in the feature set as binary will
increase the feature set size because some of the features
belong to a user-defined name like activities, services,
etc., which can be changed from one sample to another.
We can transform such features into one feature by taking
their count. Such transformation reduces the feature set
size drastically.

• Secondly, the features that have a predefined name like
API packages and system defined requested permissions
are considered to be used as a binary feature.

• Lastly, we also consider the number of API packages, to-
tal requested permissions, and custom permissions count
as features. A custom permission is the permission which
is defined by an App. As custom permission can take
any name, hence we use number of custom permission
as feature instead of binary.

Using the strategy mentioned above, this module produces
two types of features, i.e., numerical and binary features.
In Table II, column Feature Type describes the name of a
feature. In the feature name, suffix C denotes that the feature
is of Numeric type, whereas suffix B denotes binary feature.
Similarly, sub-column Original shows the total number of
unique features in the feature vector after the feature encoding
step. Finally, we are left with the 428 unique features, which
we pass to the feature selection module (see Section III-C) to
find optimal features.

C. Feature Selection (RFECV):

After feature encoding, the resulting features are utilized
to identify optimal features that directly contribute to the An-
droid malware family classification task. To determine optimal
features, we used RFECV (recursive feature elimination with
cross validation) [25]. RFECV uses a feature ranking method
and selects the best feature that contributes more in solving
the desired problem. It takes a classifier C (RandomForest),
a ranking function F (accuracy) and the number of features
N (set to 1) to eliminate in each steps. As a result, RFECV
provides a grid of score and the set of optimal features that
gives highest accuracy. The grid of score provided by the



TABLE II
ENCODING SCHEME OF STATIC FEATURES EXTRACTED FROM MANIFEST FILE AND DEX CODE.
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Fig. 2. Feature selection using RFECV.

RFECV is shown in Figure 2 as accuracy vs. #features graph,
and the optimal number of features obtained is enlisted in
sub-column Selected of Table II (total 81 unique features).

D. Learning Model

The final features obtained from Section III-C contains
optimal features that directly contibutes to the malware family
classification work. For modeling the final malware family
classifier, we use ExtraTree classifiers. ExtraTree is an en-
semble learning based classifier which internally uses multiple
Decision Tree classifier. ExtraTree classifier takes the number
of estimator for training a machine learning model which we
set to 18. The final model has been trained on 70% of samples
of our dataset, and the remaining 30% for evaluating it. We
show the evaluation of MAPFam in Section IV.

IV. EVALUATION

To evaluate the effectiveness of MAPFam in terms of label-
ing a malware with its appropriate family, we have separated
30% samples (referred to as evaluation set) from the dataset
(see Section II) and assumed them to be unknown malware
family. The rest of the 70% malware sample (referred to
as training set) are used for training in every experiment
including the feature selection step (see Section III-C). This
section answers the following research question to evaluate
the proposed malware family labeling (classification) system
effectively:

(i) Effectiveness of API Packages (Section IV-A): What
is the effectiveness of API packages against the requested
permissions and restricted APIs?
(ii) Performance with different classifiers against unknown
malware family (Section IV-B): How well MAPFam model
(original and reduced feature set) performs to label unknown
malware families by training a model with different classifiers?
(iii) Correctness of labeling of individual malware family
(Section IV-C): How well final model of MAPFam classifies
a malware into respective family?

A. Performance Comparison of Features

In this experiment, we extract three categories of features
from Android manifest file and Dex code—(i) restricted APIs
(RAPI), (ii) requested permissions (PER), and (iii) API pack-
age (PKG). To compare the performance of these feature sets,
we train seven different classifiers on the training set, namely
(i) RandomForest (RF), (ii) ExtraTree (ET), (iii) Voting classi-
fier in hard mode (VH), (iv) Voting classifier in soft mode, (v)
Decision Tree, (vi) Neural Network, and (vii) Logistic Regres-
sion, and evaluates against the evaluation set. We have used
three tree-based classifiers for the voting classifier (in hard and
soft voting mode), namely—RandomForest, ExtraTree, and
Decision Tree. Figure 3 shows the performance comparison
result of different features set (i.e., RAPI, PER, and PKG)
with two evaluation metrics—(i) Accuracy and (ii) Cohen’s
Kappa score. The accuracy represents the number of samples
(in percentage) correctly classified by a classifier, whereas
the Kappa score is a quantitative measure of reliability for
two observers for labeling the samples. In our case, the first
observer is labeled dataset (AMD) which provides actual label
for malware samples, and the second observer is a classifier. In
other words, the Kappa score is used to measure the reliability
of a machine learning model (classifier).

Suppose we observe accuracy (see Figure 3a) for all the
features set in every classifier, in that case, the API package
features are more accurate in terms of labeling the malware
family. API package-based ExtraTree classifier can correctly
label 96.46% malware samples into the respective family,
which is ∼1.63X and ∼1.04X accurate from restricted APIs
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Fig. 3. Accuracy and Cohen’s Kappa score for the model build on different
features (i) restricted APIs (RAPI), (ii) requested permission (PER), and (iii)
API package (PKG).

and requested permissions based classifier, respectively. Sim-
ilarly, when we measure the reliability of a model, in that
case, the API package-based model is much more reliable
with a 95.83% reliability rate, whereas the restricted APIs
and requested permissions based classifier are 52.14% and
91.06% reliable, respectively (see Figure 3b). Therefore, API
package-based feature set is more suitable as compared to
APIs and permissions. Similarly, permissions are more reliable
than APIs. Hence we select the requested permissions and API
Package feature set for our family classification model.
Summary: In general, API packages based feature set is more
effective and reliable as compare to API call and requested
permissions.

B. Evaluation Against Unknown Malware Family with Differ-
ent Classifiers

To show the effectiveness of MAPFam before and after
feature selection to predict unknown malware family, we use
evaluation set. For the training, we use the same seven clas-
sifiers as used in Section IV-A and train them on the training
set. Figure 4 shows the accuracy and Kappa score for the
identification of unknown malware family by the MAPFam.
When the model is evaluated without feature selection, it
correctly labels more than 91% unknown malware family (see
Figure 4a). The lowest accuracy achieved is 91.89% when the
classifier choice is Logistic Regression, whereas the highest
accuracy achieved by MAPFam is 97.62% when classifier
choice is ExtraTree. However, when the feature selection is
applied on the MAPFam, it correctly classifies more than 90%
sample with 90.95% lowest accuracy for Logistic Regression
and 97.92% highest accuracy when the classifier is ExtraTree.
From the Figure 4a, it is clear that MAPFam performance in-
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Fig. 4. Evaluation of final model against unknown malware family with
different classifiers.

creases after feature selection when ExtraTree classifier is used
for final model whereas performance decreases if the choice of
classifier is Logistic Regression. The primary reason for this
behavior is due to the unbalanced dataset and feature set size.
ExtraTree can efficiently handle the unbalanced dataset with
less number of features, whereas Logistic Regression performs
well when the feature set size is large.

Similarly, when we measure the reliability of MAPFam (see
kappa score in Figure 4b), best and worst reliable classifiers
are ExtraTree and Logistic Regression, respectively. For the
ExtraTree classifier, reliability rate goes up from 97.19% to
97.55% when feature selection is applied. However, in the
case of Logistic Regression, it goes down from 90.45% to
89.33%.
Summary: In general, MAPFam can correctly classify
97.92% of unknown malware into their respective families
with 97.55% of reliability rate.

C. Detection of an Individual Malware Family

In this experiment, we analyze MAPFam performance for
the classification of an individual malware family. To evaluate
the model, we train ExtraTree classifier on the MAPFam
feature set after performing feature selection (81 features),
and the evaluation results are shown in Figure 5. Figure 5a
shows the detection rate for an individual malware family
along with the macro and weighted average detection. Here,
the detection rate represents the percentage of samples a model
can correctly classify for a single family. Evaluation results
show that MAPFam can reliably detect most families with
a macro and weighted average detection rate of 93.41% and
97.92%, respectively. There are only three malware families
for which the detection rate is ≤50%, and these malware
families are gorpo (33 with 50% detection), ztorg (41 with
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Fig. 5. Performance of final model for detecting individual Android malware family.

33.33% detection), and opfake (56 with 50% detection).
Otherwise, all other malware families are reliably detected
with more than 75% of detection rate. Out of 60 malware
families, 36 are perfectly labeled by the MAPFam with 100%
detection rate and 12 families with a detection rate of more
than 90% but not 100%. Apart from the detection rate, we
also measure the precision for each malware family shown in
Figure 5b. Results show that MAPFam is able to detect an
individual malware family precisely with macro and weighted
average precision of 98.12% and 97.93%, respectively. There
are only two malware families for which the precision rate is
less than 85%. One is ztorg (41) with a precision of 50%,
and the other is mtk (26) with 84.21% precision, rest of the
malware families are precisely classified with more than 94%
precision rate.

D. Discussion and Limitations

As MAPFam makes use of API-package information for
Android malware family classification, which correctly clas-
sifies 97.92% of unknown malware families. However, we do
not know its runtime performance when the same technique is
used for family classification on a real smartphone. In future,
we would like to analyze it and develop an on-device Android
malware family classification system. Furthermore, we would
like to evaluate MAPFam with latest labelled dataset whenever
it is publicly available or by creating our own latest dataset.
Even though MAPFam provides good classification results, it
also has the following limitations:

(i) It cannot identify the family of malware that is encrypted.

(ii) If malware tries to load a code from an external source
dynamically, MAPFam cannot predict its family. However, if
code is present inside the APK, MAPFam can predict the

family for such malware because we check all the Dex files
bundled with an APK.

(iii) If a combination of two or more Apps are performing a
malicious activity, and one App alone is provided to identify
its family, in that case, MAPFam cannot predict its family.
However, if the combination of Apps involved in malicious
activities is provided, then MAPFam can identify its family
by constructing a combined feature vector from the Apps.

V. RELATED WORK

With the rapid growth in the numbers, variants, and diversity
of Android malware, various defense system has evolved to
detect and categorize malware. The existing solutions [3]–
[16] uses static, dynamic, or combination of both (hybrid)
techniques for malware detection. The main aim of malware
detection work is to predict whether a new sample is malicious
or benign. However, it does not provide information about
a family to which malware belongs. If a malware family
is known, then the same removal techniques can be reused
that has been known to work for that family of malware,
and analysts can give their attention to the new samples of
unknown malware family. With this goal, several efforts (
[3], [5], [8], [10], [12], [15], [17]–[20]) have been made to
group similar malware into families automatically. This work
is also focusing on malware family identification. Therefore,
we restrict our discussion to malware family classification or
characterization in the context of static and dynamic/hybrid
analysis.

Static Analysis based Classification: Static analysis-based
solutions extract information from an App without executing
it. Existing solutions [3], [10], [12], [19], [26], [27] extract
static information from the manifest file, Dex code, and



sometimes additional information from other resources like
certificate, developer information, create time, and others.
Alswaina et al. [26] extract information about the permission
and reduce the feature set size by excluding the least important
features (with zero importance) by using ExtraTree and achiev-
ing an accuracy of 95.97% for 28 malware families. Drebin
[3] extracts more than 0.5 million binary features from the
Dex code and manifest file, including permissions, API calls,
URLs, components, and many more. Drebin took the top 20
malware families for the classification task and achieved an
average accuracy of 93%.

Fan et al. [27] make use of frequent subgraphs to understand
malware behavior with the help of a function call graph
of sensitive API calls inside the Dex code. DroidLegacy
[19] first partitions an APK into loosely coupled modules to
identify piggybacked malware. After that, it compares the API
call made by each module to the signature of each family.
DroidLegacy has used 14 unique malware families for the
evaluation where the size of family rise between 12 to 309
and achieves an accuracy of 94.03%.

AndMFC [10] utilizes requested permissions and API call
information for classifying the Android malware family. In
AndMFC, the feature importance method has been used to
reduce the size of features. It selects the top 1000 important
features while achieving more than 96% accuracy with a
precision rate of 95.02%. XU et al. [12] extracts CFGs (control
flow graph) and DFGs (data flow graph) and then generate a
weighted graph by abstracting both of them. The combined
weighted graph is then used to identify a malware family.
They used top 20 malware families where family size ranges
from 57 to 2753 unique malware samples and achieved an
accuracy of 94.71%.

All the above work utilizes API call information in some
form, whereas we use API package information to identify
Android malware families. R-PackDroid [7] is the most closely
related work that utilizes API package information to char-
acterize and detect Mobile Ransomware. However, in later
work [28], authors have again shifted their focus on API call
information. Also, most of the work utilizes outdated dataset
or operates on fewer families that contain a sufficient number
of unique samples, whereas we evaluate our solution on a large
number of families.

Dynamic/Hybrid Solutions: In dynamic analysis-based solu-
tions, the behavior of an App is obtained by executing it either
on an emulated platform or on an actual device. Whereas, a
hybrid solution utilizes information from both the method,
i.e., static and dynamic. Several efforts [5], [8], [9], [11],
[17], [18] have also been made to identify malware families
using dynamic/hybrid methods. Most work [5], [9], [11], [17],
[18] utilizes an emulator-driven analysis framework to capture
dynamic information.

EC2 [17] uses both supervised and unsupervised machine
learning techniques to predict Android malware families with
the ability to identify singleton families. Wang et al. [11] use
all static features except for network address and restricted API

used in Drebin [6] and the dynamic information captured by
executing a malware sample on CuckooDroid [29]. It utilizes
the top 20 malware families containing samples until 2014 and
achieves an average positive rate of 98.94% (accuracy).

Similarly, Andro-Simnet [5] also uses the hybrid method
and collects dynamic logs by executing a sample on emulated
device. Andro-Simnet uses a malware similarity graph (a
social network analysis technique) and achieves an accuracy
of 97% to classify eight malware families.

All the method provides good classification results as
dynamic analysis can capture actual behavior of an App.
However, these techniques use an outdated dataset that does
not represent the state of toady’s malware which senses the
execution platform. A platform-sensing malware did not show
its actual behavior on finding that an execution environment is
an emulated platform [21]. Recently, a work [30] has come to
hide an emulated platform from a platform-sensing malware.

VI. CONCLUSION

In this paper, we have shown that the API package-based
malware family classification model is ∼1.63X more accurate
than the API call-based method. Later, we have developed
MAPFam, a manifest file and API package-based family
classification system that is capable of predicting a malware
family precisely and accurately. We have performed several
experiments to show the effectiveness of MAPFam to identify
unknown malware families. The evaluation results showed that
the MAPFam classification system can accurately classify mal-
ware families with an average precision and accuracy of more
than 97% for the top 60 malware family. The MAPFam model
is 97.55% reliable. We have also shown the effectiveness of
MAPFam in identifying individual malware families and found
that it can perfectly identify 36 malware families out of 60.
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