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Motivation 
Rapid growth of Android malware 

3.12 million new samples in 2020 (source AV-TEST) 

 

More attention to malware detection rather than family identification 

 

If malware family is known 

Same removal technique can be reuse 

 Identify damages done 

 
Automatic malware family classification is also important 
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Dataset 
Collected AMD dataset 

24553 unique labeled malware 

Distributed in 71 families 

 

Select top 60 malware family 

At least 9 unique samples 

 

Randomly selected 70% sample for the training and rest for the 

evaluation 
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ID Family Size 

0 airpush 7843 

1 dowgin 3384 

2 fakeinst 2172 

3 mecor 1820 

4 youmi 1300 

5 fusob 1270 

6 kuguo 1199 

7 jisut 558 

8 droidkungfu 546 

9 bankbot 460 

10 rumms 402 

11 lotoor 329 

12 mseg 235 

13 boqx 215 

14 minimob 203 

ID Family Size 

15 triada 197 

16 kyview 175 

17 slembunk 174 

18 simplelocker 172 

19 smskey 165 

20 gumen 145 

21 gingermaster 128 

22 leech 109 

23 nandrobox 76 

24 bankun 70 

25 koler 69 

26 mtk 67 

27 golddream 53 

28 androrat 46 

29 erop 46 

ID Family Size 

30 andup 44 

31 boxer 44 

32 ksapp 36 

33 gorpo 32 

34 stealer 25 

35 updtkiller 24 

36 zitmo 24 

37 vidro 23 

38 aples 21 

39 fakedoc 21 

40 fakeplayer 21 

41 ztorg 20 

42 winge 19 

43 penetho 18 

44 cova 17 

ID Family Size 

45 mobiletx 17 

46 fjcon 16 

47 kemoge 15 

48 spambot 15 

49 mmarketpay 14 

50 svpeng 13 

51 vmvol 13 

52 faketimer 12 

53 steek 12 

54 utchi 12 

55 fakeangry 10 

56 opfake 10 

57 spybubble 10 

58 univert 10 

59 finspy 9 

Selected Families 



Design MAPFam Evaluation 

MAPFam: Overview 
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Hypothesis 



Hypothesis 
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Use of system API package improves the performance of family 

classifier with less number of features as compared to API calls 



Observation 
Performance of API based classifiers 

Negatively impacted due to obfuscation 

 Increases size of feature set 

API package can be used alternate to 

API calls 

Benefit 

Free from obfuscation attack 

Reduces size of feature set 

Example: 

Android API level 30 
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API Level 30 

4833 Unique 

Classes 

226 Unique 

Packages 

19332 Unique 

APIs 

226 Unique 

Packages 

4 method 

per class 

21.83X 

85.43X 



Testing The Hypothesis 
Extracted 

Restricted APIs (RAPI) 

Requested Permissions (PER) 

API Packages (PKG) 

Trained 7 classifiers and observes 

Accuracy 

Reliability (Kappa Score) 
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API packages are 1.63X and 1.04X accurate than APIs and permissions 

1.84X and 1.05X more reliable than APIs and permissions 



Evaluation Hypothesis Design MAPFam 

MAPFam: Overview 
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MAPFam Design 
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Feature 

Extraction & 

Encoding 

Feature Selection 

(RFECV) 
Learning Model 

Three major components 



Feature Extraction 

Extract features from two sources 

Manifest file 

Dex Code 

Extracted using Androguard 

Represented as string 
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Activities 

Services 

Receivers 

Providers 

App Components 

Intents 

Requested Permissions 

API Packages 

Manifest File 

Dex Code 



Feature Encoding 
Encode based on their count and 

presence (binary) 

Count: frequency of usage 

User defined components like activities, 

services, custom permissions, etc… 

#API packages used 

Binary: to observe presence 

System defined components like 

permissions, and API Packages 
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Category 
#Features 

Encoding 

Activities 1 

Services 1 

Receivers 1 

Providers 1 

Intents 1 

Custom Permissions 1 

Package Counts 1 

Requested Permissions 261 

API Packages 159 

Total 428 



MAPFam Design 
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Feature 

Extraction & 

Encoding 

Feature Selection 

(RFECV) 
Learning Model 

Three major components 



Feature Selection 
Use RFECV 

Classifier: RandomForest 

Ranking Function: Accuracy 

Eliminate feature in each step: 1 

Provides optimal #features with 

highest accuracy 
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Category 
#Features 

Encoding Selected 

Activities 1 1 

Services 1 1 

Receivers 1 0 

Providers 1 1 

Intents 1 1 

Custom Permissions 1 1 

Package Counts 1 1 

Requested Permissions 261 33 

API Packages 159 41 

Total 428 81 



MAPFam Design 
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Feature 

Extraction & 

Encoding 

Feature Selection 

(RFECV) 
Learning Model 

Three major components 



Learning Model 
Use ExtraTree to learn final model 

Ensemble method 

 Information gain 

Does not require feature scaling 

Train model on 70% of samples AMD dataset 

Remaining 30% for evaluation 
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Design MAPFam Hypothesis Evaluation 

MAPFam: Overview 
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 Evaluation 
Evaluation metrics 

Accuracy 

Kappa Score 

Recall 

Precision 
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Performance 
Trained 7 different classifiers 

Before and after feature selection 

Observes 

Accuracy 
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97.92% accurate for malware family identification 



Performance 
Trained 7 different classifiers 

Before and after feature selection 

Observes 

Accuracy 

Reliability  

20 

97.92% accurate for malware family identification 

MAPFam is 97.55% reliable  



Individual Family: Detection Rate 
Trained ExtraTree classifier after feature selection 
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On average, it identify malware family with 97.92% of detection rate 

Perfectly identify 36 malware family with 100% detection rate 



Individual Family: Precision 
Trained ExtraTree classifier after feature selection 
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MAPFam can precisely identify malware family with average precision rate 

of 97.93% 



Limitations 
Cannot identify malware family 

Packed malware 

Download malicious code from external source at runtime 
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Conclusion 
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API Packages are ~1.63X more accurate than API call based model 

Precisely classify malware family with average precision and accuracy 

of more than 97% 

Perfectly identify 36 malware families out of 60 

MAPFam model is 97.55% reliable 
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