
Android Malware Family Classification:

What Works -- API Calls, Permissions or

API Packages?
Saurabh Kumar, Debadatta Mishra, and Sandeep Kumar Shukla

Indian Institute of Technology Kanpur

Presented at

SIN-2021

Motivation
Rapid growth of Android malware

3.12 million new samples in 2020 (source AV-TEST)

More attention to malware detection rather than family identification

If malware family is known

Same removal technique can be reuse

 Identify damages done

Automatic malware family classification is also important

2

Dataset
Collected AMD dataset

24553 unique labeled malware

Distributed in 71 families

Select top 60 malware family

At least 9 unique samples

Randomly selected 70% sample for the training and rest for the

evaluation

3

4

ID Family Size

0 airpush 7843

1 dowgin 3384

2 fakeinst 2172

3 mecor 1820

4 youmi 1300

5 fusob 1270

6 kuguo 1199

7 jisut 558

8 droidkungfu 546

9 bankbot 460

10 rumms 402

11 lotoor 329

12 mseg 235

13 boqx 215

14 minimob 203

ID Family Size

15 triada 197

16 kyview 175

17 slembunk 174

18 simplelocker 172

19 smskey 165

20 gumen 145

21 gingermaster 128

22 leech 109

23 nandrobox 76

24 bankun 70

25 koler 69

26 mtk 67

27 golddream 53

28 androrat 46

29 erop 46

ID Family Size

30 andup 44

31 boxer 44

32 ksapp 36

33 gorpo 32

34 stealer 25

35 updtkiller 24

36 zitmo 24

37 vidro 23

38 aples 21

39 fakedoc 21

40 fakeplayer 21

41 ztorg 20

42 winge 19

43 penetho 18

44 cova 17

ID Family Size

45 mobiletx 17

46 fjcon 16

47 kemoge 15

48 spambot 15

49 mmarketpay 14

50 svpeng 13

51 vmvol 13

52 faketimer 12

53 steek 12

54 utchi 12

55 fakeangry 10

56 opfake 10

57 spybubble 10

58 univert 10

59 finspy 9

Selected Families

Design MAPFam Evaluation

MAPFam: Overview

5

Hypothesis

Hypothesis

6

Use of system API package improves the performance of family

classifier with less number of features as compared to API calls

Observation
Performance of API based classifiers

Negatively impacted due to obfuscation

 Increases size of feature set

API package can be used alternate to

API calls

Benefit

Free from obfuscation attack

Reduces size of feature set

Example:

Android API level 30

7

API Level 30

4833 Unique

Classes

226 Unique

Packages

19332 Unique

APIs

226 Unique

Packages

4 method

per class

21.83X

85.43X

Testing The Hypothesis
Extracted

Restricted APIs (RAPI)

Requested Permissions (PER)

API Packages (PKG)

Trained 7 classifiers and observes

Accuracy

Reliability (Kappa Score)

8

API packages are 1.63X and 1.04X accurate than APIs and permissions

1.84X and 1.05X more reliable than APIs and permissions

Evaluation Hypothesis Design MAPFam

MAPFam: Overview

9

MAPFam Design

10

Feature

Extraction &

Encoding

Feature Selection

(RFECV)
Learning Model

Three major components

Feature Extraction

Extract features from two sources

Manifest file

Dex Code

Extracted using Androguard

Represented as string

11

Activities

Services

Receivers

Providers

App Components

Intents

Requested Permissions

API Packages

Manifest File

Dex Code

Feature Encoding
Encode based on their count and

presence (binary)

Count: frequency of usage

User defined components like activities,

services, custom permissions, etc…

#API packages used

Binary: to observe presence

System defined components like

permissions, and API Packages

12

Category
#Features

Encoding

Activities 1

Services 1

Receivers 1

Providers 1

Intents 1

Custom Permissions 1

Package Counts 1

Requested Permissions 261

API Packages 159

Total 428

MAPFam Design

13

Feature

Extraction &

Encoding

Feature Selection

(RFECV)
Learning Model

Three major components

Feature Selection
Use RFECV

Classifier: RandomForest

Ranking Function: Accuracy

Eliminate feature in each step: 1

Provides optimal #features with

highest accuracy

14

Category
#Features

Encoding Selected

Activities 1 1

Services 1 1

Receivers 1 0

Providers 1 1

Intents 1 1

Custom Permissions 1 1

Package Counts 1 1

Requested Permissions 261 33

API Packages 159 41

Total 428 81

MAPFam Design

15

Feature

Extraction &

Encoding

Feature Selection

(RFECV)
Learning Model

Three major components

Learning Model
Use ExtraTree to learn final model

Ensemble method

 Information gain

Does not require feature scaling

Train model on 70% of samples AMD dataset

Remaining 30% for evaluation

16

Design MAPFam Hypothesis Evaluation

MAPFam: Overview

17

 Evaluation
Evaluation metrics

Accuracy

Kappa Score

Recall

Precision

18

Performance
Trained 7 different classifiers

Before and after feature selection

Observes

Accuracy

19

97.92% accurate for malware family identification

Performance
Trained 7 different classifiers

Before and after feature selection

Observes

Accuracy

Reliability

20

97.92% accurate for malware family identification

MAPFam is 97.55% reliable

Individual Family: Detection Rate
Trained ExtraTree classifier after feature selection

21

On average, it identify malware family with 97.92% of detection rate

Perfectly identify 36 malware family with 100% detection rate

Individual Family: Precision
Trained ExtraTree classifier after feature selection

22

MAPFam can precisely identify malware family with average precision rate

of 97.93%

Limitations
Cannot identify malware family

Packed malware

Download malicious code from external source at runtime

23

Conclusion

24

API Packages are ~1.63X more accurate than API call based model

Precisely classify malware family with average precision and accuracy

of more than 97%

Perfectly identify 36 malware families out of 60

MAPFam model is 97.55% reliable

25

