

IoT-FedMalDetect: Federated Learning based Malware Detection for IoT Edge Devices

Heetkumar Patel, Suresh Kumar Amalapuram, **Saurabh Kumar**, Bheemarjuna Reddy Tamma

Indian Institute of Technology Hyderabad

(10th September 2025)

@ IEEE CNS 2025

Acknowledgement

□ISEA Phase-III project, titled "Security in Distributed Wireless Networks", funded by MeitY, Government of India

□DST-FIST Grant

Motivation

- □ Rapid proliferation of IoT devices.
 - > Across homes, industries, and critical infrastructure.
- □ Rise of IoT malwares.
 - > e.g., Mirai, Bashlite botnets causing large-scale disruptions.
- □ Traditional signature-based detection systems are ineffective against novel malware.
- □ Privacy concerns prevent centralized data collection from IoT devices.
- ■We need a solution that is
 - > Scalable
 - > Efficient
 - > Privacy-preserving

Problem Statement

Objective: Enable efficient malware detection in IoT edge devices.

Challenges:

- □Resource-constrained devices (limited memory, CPU)
- □Lack of labeled data for supervised learning
- □Privacy concerns prevent data sharing
- □Non-IID and highly imbalanced data distribution across devices.

Challenges in existing work

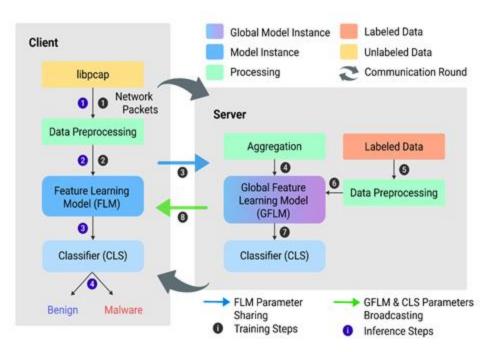
Federated Semi-supervised / Unsupervised approach:

- □Pseudo-labeling methods¹: rely on confidence scores.
- □Autoencoder-based approaches²: use fixed reconstruction thresholds.
- □Centroid-based classifiers³: depend on a fixed distance from centroid.

Common issue: Lack robustness to real-world variability, because of fixed separation value.

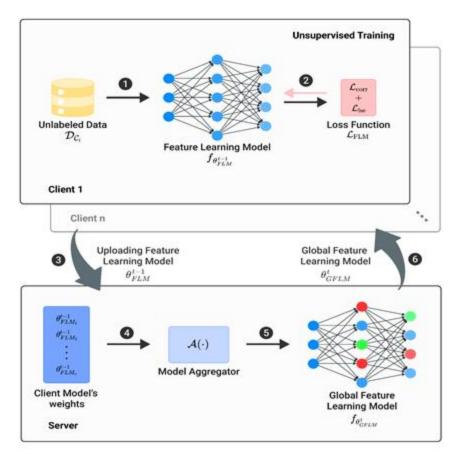
- 1. X. Pei et. al. "A knowledge transfer-based semi-supervised federated learning for IoT malware detection," DTSC 2022
- 2. Y. Meidan et. al "N-baiot—network-based detection of iot botnet attacks using deep autoencoders," IEEE Pervasive Computing 2018
- 3. V. T. Nguyen, R. Beuran "FedMSE: Semi-supervised federated learning approach for IoT network intrusion detection," Computers & Security 2025

System Overview



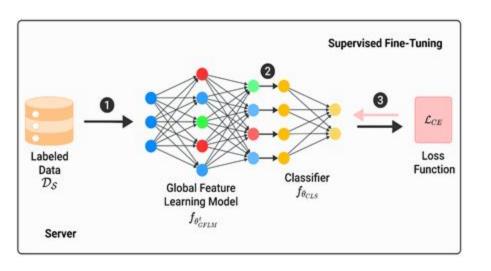
- □ Client (IoT Devices)
 - Capture network traffic using Scapy
 - Preprocess raw traffic: extract features
 - Locally train Feature Learning Model (FLM)
- □ Central Server
 - Aggregates FLM parameters from multiple clients using FedDyn
 - Fine-tunes a global model by adding a classifier head trained on public labeled data
 - Distributes final detection model back to IoT clients.

Unsupervised FLM training (Client)



- □ Goal: Learn meaningful feature representations without labels.
- □ Loss Functions:
 - Correlation Loss (L_{corr}): Minimizes redundancy in learned features.
 - Latent Space Equalization Loss (L_{|se}): Ensures balanced feature utilization and prevents feature collapse.
- □ Clients send only model parameters (no raw data) to server
- □ Server aggregates models using **FedDyn**, which reduces client drift caused by non-IID data.

Supervised Fine-tuning (Server)



- □ The server attaches a classifier head to the aggregated global FLM
- □ Fine-tunes the combined model using limited labeled malware samples
- □ The final model is broadcast back to IoT clients for deployment.
- □Advantages:
 - Eliminates need for labeled data at clients
 - > Allows continuous adaptation to new threats.

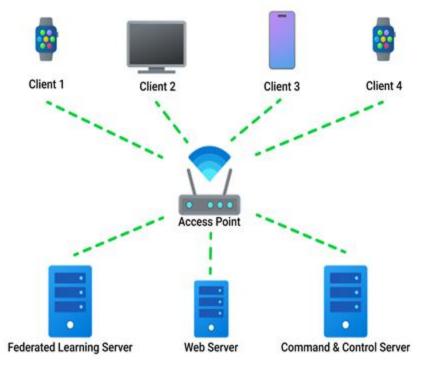
Experimental Setup

□ IoT Testbed Simulation:

- Raspberry Pi devices as clients, one as C&C server, another as central server
- Captured traffic includes both benign activities and botnet (Mirai, Bashlite) attacks

□ Local Simulation:

- High-performance server simulating multiple clients
- > Datasets: N-BaloT, IoT-23, RaDaR
- □ Feature extraction: 115 statistical features over multiple time windows.



IoT Testbed

Data Distribution and Preprocessing

- □Data split: 70% Train, 10% Validation, 20% Test
- □Dirichlet partitioning simulates non-IID distribution
- □Features normalized using Standard Scaler
- □Data split across multiple clients to simulate real-world heterogeneity.

Performance Metrics

- □ROC-AUC: Measure of true positive rate vs false positive rate
- □PR-AUC: Measure of precision vs recall
- □Resource usage metrics:
 - > CPU utilization (%)
 - Memory usage (MB)
 - > FLOPs and model size (parameters)

Result [1/6]: Validation on IoT Testbed

Model	Device	Bashlite	Mirai	Training Samples (Benign)	Training Samples (Malware)	Training Time (sec)	Memory Consumption (MB)	CPU Consumption (out of 400%)	ROC-AUC	PR-AUC
Our	Client-1	✓	✓	49548	30090	160	599.43	212	0.9770	0.9657
	Client-2	×	✓	13113	17378	94	249	212	0.9312	0.9590
	Client-3	✓	X	39100	12180	140	403	211	0.8743	0.7809
	Client-4	×	X	45627	-	132	367	211	0.9211	0.9510
SAE-CEN	Client-1	✓	✓	49548		233	498	224	0.9994	0.9929
	Client-2	×	✓	13113	-	70	137	225	0.9712	0.9672
	Client-3	1	×	39100	-	176	499	224	0.9938	0.9777
	Client-4	×	×	45627		211	458	224	0.9397	0.8942

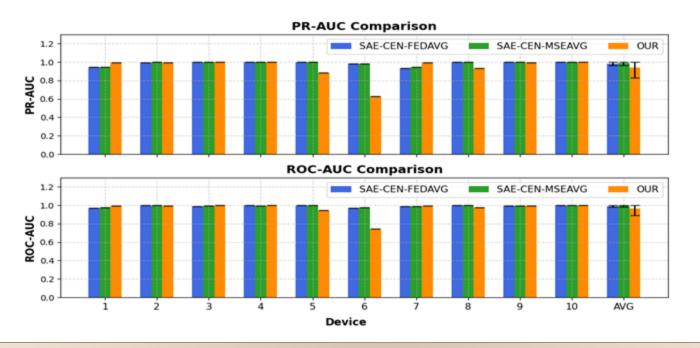
Result [1/6]: Validation on IoT Testbed

Model	Device	Bashlite	Mirai	Training Samples (Benign)	Training Samples (Malware)	Training Time (sec)	Memory Consumption (MB)	CPU Consumption (out of 400%)	ROC-AUC	PR-AUC
Our	Client-1	1	1	49548	30090	160	599.43	212	0.9770	0.9657
	Client-2	×	1	13113	17378	94	249	212	0.9312	0.9590
	Client-3	1	×	39100	12180	140	403	211	0.8743	0.7809
	Client-4	×	×	45627	-	132	367	211	0.9211	0.9510
SAE-CEN	Client-1	1	/	49548		233	498	224	0.9994	0.9929
	Client-2	×	✓	13113	-	70	137	225	0.9712	0.9672
	Client-3	1	×	39100	-	176	499	224	0.9938	0.9777
	Client-4	×	×	45627		211	458	224	0.9397	0.8942

IoT-FedMalDetect achieves comparable detection performance without knowledge of the labels of any class at client

Model trains ~1.6X faster, and uses ~1.2X less memory with some overhead on server

Result [2/6]: Local Simulation on N-BaloT Dataset with 10 Clients



Our method achieves competitive performance, enabling effective learning without compromising privacy or relying on centralized data, as in baseline approaches

Result [3/6]: Performance Validation

Performance on Centralized vs Federated training setup on N-BaloT dataset with 10 Clients

Performance on Various Malware Dataset with 10 Clients

Metric	Centralized	FL (avg)
ROC-AUC	0.9988	0.9485
PR-AUC	0.9988	0.9177

Metric	N-BaloT	loT-23	RaDaR
Avg. ROC-AUC	0.9485	0.8549	0.7350
Avg. PR-AUC	0.9177	0.9311	0.9506

Federated Learning shows strong detection with a minor drop compared to centralized training due to diverse, distributed client data hindering uniform pattern learning

Our model generalizes well, with high PR-AUC even on RaDaR, though lower ROC-AUC suggests some sensitivity to class imbalance

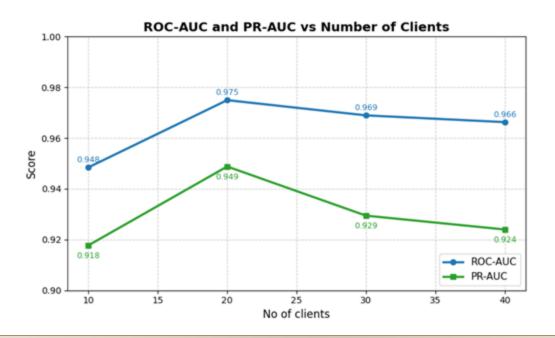
Result [4/6]: Computation Efficiency

Against SAE-CEN (FedMSE variants)

Metrics	SAE	-CEN	Ours		
	Client	Server	Client	Server	
FLOPs (KFLOPS)	303.6	-	11.65	41.538	
MACs (KMACs)	151.2		5.75	20.47	
Params (K)	12.826		9.164	24.334	

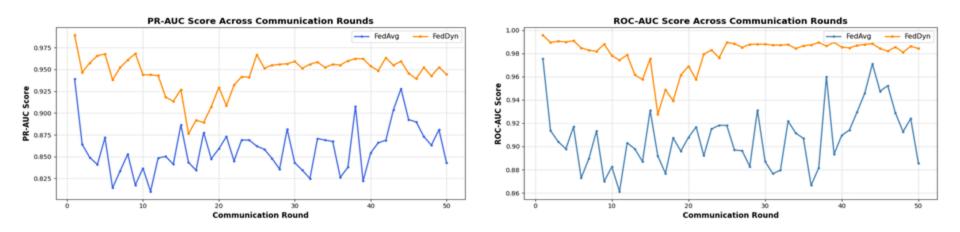
Our method drastically reduces client-side computation with overhead at serverside, making it highly suitable for IoT devices

Result [5/6]: With Varying #Clients



Detection performance fluctuates but remains high and robust, reflecting the FL trade-off where more clients increase heterogeneity, noise, and variance

Result [6/6]: Aggregation Methods (FedAvg & FedDyn)



FedDyn shows better stability and performance compared to FedAvg across communication rounds, which makes it more reliable for FL in non-IID settings

FedAvg suffers from high fluctuations, indicating sensitivity to client updates and data heterogeneity

Conclusion

Proposed a semi-supervised federated learning framework for IoT malware detection

Unsupervised client-side training - no need for labeled data on devices

Achieves comparable detection performance to baseline models

Lightweight training - suitable for resource-constrained IoT devices

Provides a scalable, efficient, and privacy-preserving IoT security solution

Thank You