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Motivation 
Rapid growth of Android malware 

4.18 million new samples in 2019 (source G DATA) 

 

Malware may get unleashed into the device 

Bypassing the defense system of Play store 

Third party market and Sideloading 

 

Required on device malware detection 
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Our Goal 
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Designing an on-device malware detector that is faster, 

consume less device energy, provides high malware detection 

rate and low false alarms 

Challenge: Limited energy of mobile device 



Feature Engineering Building the System 

DeepDetect: Overview 
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Feature Extraction 



Feature Extraction 

Extract features from two sources 

Manifest file 

Dex Code 

Use Opcode sequence from the 

Dex Code 

DexLib2 

Operate in-memory 
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Building the System Feature Extraction Feature Engineering 

DeepDetect: Overview 
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Feature Engineering 
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Feature Selection 

& Encoding 

Category-wise 

feature reduction 

Feature reduction 

from combined 

feature set 

Three major components 



Feature Selection and Encoding 
Encode based on their count and 

presence (binary) 

Count: frequency of usage 

User defined components like activities, 

services, custom permissions, etc… 

N-Gram Opcode sequences 

Binary: to observe presence 

System defined components like 

permissions, hardware features, etc.. 
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Category 
#Features 

Original Encoding 

Activities 5,24,989 1 

Services 57,202 1 

Receivers 49,751 1 

Providers 6,659 1 

Intents 50,257 1 

Custom Permissions 0 1 

Requested Permissions 23,175 668 

Hardware Component 245 245 

2-Gram Opcode 317 317 

Total 7,12,595 1,236 



Feature Engineering 
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Feature Selection 

& Encoding 

Category-wise 

feature reduction 

Feature reduction 

from combined 

feature set 

Feature 

Reduction Based 

on Correlation 

Optimal Feature 

Identification 

Three major components 



Correlation Based Reduction 
Use Pearson correlation (-1 to +1) 

0: weak 

±1: strong positive and negative 

Different threshold (CORT) 0.5 to 

1.0 in both directions 

C
O

R
T
 

Accuracy (%) / #Features 

ReqPerm HWC 2-OPC 

0.5 93.69 / 533 60.58 / 194 86.32 / 39 

0.6 94.00 / 562 60.79 / 207 90.05 / 55 

0.7 93.99 / 575 60.82 / 212 94.82 / 72 

0.8 94.74 / 602 60.80 / 224 95.50 / 104 

0.9 94.86 / 626 60.79 / 226 95.99 / 172 

1.0 94.89 / 668 60.85 / 245 96.28 / 317 
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• 0.8 for requested permissions and hardware components 

• 0.9 for 2-Gram Opcode sequence 



Feature Engineering 
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Feature Selection 

& Encoding 

Category-wise 

feature reduction 

Feature reduction 

from combined 

feature set 

Feature 

Reduction Based 

on Correlation 

Optimal Feature 

Identification 

Three major components 



Optimal Feature Identification 
Use RFECV 

Classifier: RandomForest 

Ranking Function: Accuracy 

Eliminate feature in each step: 1 

Provides optimal #features with 

highest accuracy (AccR) 
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Optimal #features Vs. accuracy for requested 

permissions 

Feature Accuracy #Features 

ReqPerm 94.77 371 

HWC 60.79 185 

2-Opc 90.01 169 

Observation: With a significant less number 

of features result in an accuracy close to 

maximum achievable accuracy 



Optimal Feature Identification cont.. 
Define threshold RFET, penalty in 

choosing less #features in terms 

of accuracy 

Evaluated for different RFET 

values from 0.0 to 0.5 
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R
F

E
T
 

Accuracy (%) / #Features 

ReqPerm HWC 2-OPC 

0.0 94.77 / 371 60.79 / 185 96.01 / 169 

0.1 94.76 / 86 60.75 / 17 95.92 / 69 

0.2 94.68 / 60 60.72 / 13 95.90 / 62 

0.3 94.57 / 52 60.65 / 13 95.76 / 48 

0.4 94.47 / 41 60.62 / 13 95.76 / 37 

0.5 94.34 / 40 60.60 / 12 95.64 / 37 

A drastic reduction in feature set size for 0.5 as RFET value 



Feature Engineering 
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Feature Selection 

& Encoding 

Category-wise 

feature reduction 

Feature reduction 

from combined 

feature set 

Feature 

Reduction Based 

on Correlation 

Optimal Feature 

Identification 

Three major components 



Feature Engineering 
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Feature selection 

& encoding 

Category-wise 

feature reduction 

Feature reduction 

from combined 

feature set 

Combining 

feature sets 

Feature reduction 

in combined 

feature set 

Three major components 



Combining Feature Sets 
Combined all the feature set in 

different combination 

N: numeric features obtained using 

encoding 

R: reduced requested permissions 

H: reduced hardware components 

O: reduced 2-Gram Opcode 

Two different combination with 

highest accuracy. 
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Combination #Features Acc Pre Rec 

N+H 18 86.45 86.55 85.46 

N+O 36 96.90 96.93 96.90 

H+O 42 96.07 96.19 96.07 

N+R 46 96.45 96.46 96.24 

N+H+O 48 96.87 96.89 96.87 

R+H 52 95.16 95.08 94.96 

N+R+H 58 96.57 96.59 96.37 

R+O 70 98.15 98.15 98.15 

N+R+O 76 98.14 98.15 98.14 

R+H+O 82 98.12 98.12 98.12 

N+R+H+O 88 98.12 98.12 98.12 



Combining Feature Sets 
Combined all the feature set in 

different combination 

N: numeric features obtained using 

encoding 

R: reduced requested permissions 

H: reduced hardware components 

O: reduced 2-Gram Opcode 

Two different combination with 

highest accuracy. 
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Combination #Features Acc Pre Rec 

N+H 18 86.45 86.55 85.46 

N+O 36 96.90 96.93 96.90 

H+O 42 96.07 96.19 96.07 

N+R 46 96.45 96.46 96.24 

N+H+O 48 96.87 96.89 96.87 

R+H 52 95.16 95.08 94.96 

N+R+H 58 96.57 96.59 96.37 

R+O 70 98.15 98.15 98.15 

N+R+O 76 98.14 98.15 98.14 

R+H+O 82 98.12 98.12 98.12 

N+R+H+O 88 98.12 98.12 98.12 
Select N+R+O as contribution of numeric feature is significant when 

combined with requested permissions 
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in combined 

feature set 

Three major components 



Reduction in Selected Feature Set 
Eliminate features that require 

extra support 

 Intents (I) 

Custom permissions (C) 

Observe effect either removing 

one or both  
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Removes Intents as it does not impact model performance, hence 

selects N+R+O-I 

Feature Set #Features Acc Pre Rec 

N+R+O 76 98.14 98.15 98.14 

N+R+O-I 75 98.18 98.18 98.18 

N+R+O-C 75 98.08 98.08 98.08 

N+R+O-I-C 74 98.13 98.13 98.13 



Feature Engineering 

20 

Feature selection 

& encoding 

Category-wise 

feature reduction 

Feature reduction 

from combined 

feature set 

Combining 

feature sets 

Feature reduction 

in combined 

feature set 

Use final feature set with 75 features to design DeepDetect 

Three major components 



Feature Engineering Feature Extraction Building the System 

DeepDetect: Overview 
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Learning Model 
Use RandomForest to learn final 

model 

Ensemble method 

 Information gain 

Does not require feature scaling 

Use TensorFlow library to learn final 

model 

Converted to TensorFlow Lite model 

for on-device detection 
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Why? 

Classifier Recall FPR Training time 

N
o
 S

c
a
lin

g
 RF 97.50 1.51 0.5134 

SVM 84.29 32.11 533.6512 

KNN 90.98 8.68 32.0794 

Neural Net 93.19 8.41 28.4913 

S
c
a
lin

g
 

RF 97.49 1.54 0.5799 

SVM 96.11 2.52 108.3715 

KNN 96.47 3.15 34.3693 

Neural Net 96.09 4.30 37.0156 



Building The System 
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On-device Detection 
Check when an App gets installed/updated 

Generate feature vector 

Pass to detection model 

Benign:  

Malware:  

 Notify to user 

 Option to uninstall App 

25 



Building The System 
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 Evaluation 
Evaluation metrics 

Precision 

Recall 

F1-Score 

False Positive Rate 

Runtime performance 

Execution time 

Device energy consumption  

27 



Dataset 
Multiple Datasets 

Training (Known): 80% samples of 

AMD, VirusShare and Play Store 

Evaluation (Unseen): 20% of AMD, 

VirusShare and Play Store 

New: AndroZoo (2019) and Pegasus 

samples 

Obfuscated by obfuscating 

Androzoo-2019 
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Dataset/source Duration Malware Benign 

AMD Till 2016 24553 -- 

VirusShare Till 2018 20976 -- 

Pay store Till 2018 -- 56346 

AndroZoo-2019 2019 5380 5380 

Pegasus (CloudSek) Pre 2019 5 -- 

Obfuscated 2019 4993 -- 



Performance Comparison of Features 

Extracted 7 different features from 

Dex code 

RandomForest classifier is trained 

on training set 

Evaluated against evaluation set 

Observes 

ROC curve and AUC value 
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Three feature set (2-Gram, 3-Gram, USR) with more 99% AUC 

Feature set size of USR is relatively large compared to 2-Gram and 3-Gram  



Runtime Efficiency of Features 
Use five different Apps 

Extracts features on three different 

smartphones 

Measures execution time 

Per App 

30 

Per App execution time on OnePlus 7Pro 



Runtime Efficiency of Features 
Use five different Aps 

Extracts features on three different 

smartphones 

Measures execution time 

Per App 

Average execution time 
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Average execution time on different device 

With 6.06 seconds of average execution time on all devices  

2-Gram take ~5.32 seconds on OnePlus 7Pro, which is 2.13X and 2.53X 

faster than RA and SA, respectively  



Runtime Efficiency of Features 
Use five different Apps 

Extracts features on three different 

smartphones 

Measures execution time 

Per App 

Average execution time 

Device battery consumption 
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However, average energy consumption across all devices is 0.7% 

Device energy estimation 

In OnePlus 7Pro, 2-Gram consumes 0.45% battery, which improves device 

energy by more than 2.1X against non Opcode based features 



Robustness Against Unseen/New 
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Evaluated against known (training), unseen (evaluation set), new 

(Androzoo-2019) 

Also evaluated against 5 samples of Pegasus malware 

Dataset 

Training Set 

Evaluation Set 

AndroZoo-2019 

Pegasus (5) 

Precision 

99.98 

98.05 

97.70 

-- 

Recall 

99.95 

97.50 

97.12 

100 

F1 

99.95 

97.69 

97.69 

-- 

FPR 

0.01 

1.51 

1.73 

-- 

Detect more than 97% new malware with FPR of 1.73% 

Detect all samples of Pegasus malware 



Evaluation Against Obfuscated Samples 

New obfuscated malware 

sample 

Obfuscated AndroZoo-2019 

Utilized Obfusapk Tool 

4993 unique sample in 6 category 

Evaluated on same samples 

non-obfuscated (original) 

and obfuscated 
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Category #Samples 

Trivial 160 

Renaming 570 

Encryption 1135 

Reflection 252 

Code 2429 

Mix 447 

Overall 4993 

Original 

156 

554 

1102 

241 

2358 

438 

4849 

#Sample Detected 

Obfuscated 

156 

554 

1092 

239 

2298 

429 

4849 

Drop 

(%) 

0 

0 

0.53 

0.79 

2.47 

2.01 

1.55 

No drop for trivial and renaming category 

Maximum drop is 2.47% for code with average detection rate of 95.57% 



Limitations 
Cannot detect malware 

Malicious behavior in native code 

Packed malware 

Download malicious code from external source at runtime 
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Conclusion 
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With effective feature engineering, we have designed DeepDetect 

Effectively detect more than 97% new malware with an FPR of 1.73% 

Analyze an App in ~5.32 seconds while consuming 0.45% of total 

device battery for 50 Apps 

Detect 95.57% of obfuscated malware 
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